9 research outputs found
CDNF and MANF regulate ER stress in a tissue-specific manner
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) display cytoprotective effects in animal models of neurodegenerative diseases. These endoplasmic reticulum (ER)-resident proteins belong to the same protein family and function as ER stress regulators. The relationship between CDNF and MANF function, as well as their capability for functional compensation, is unknown. We aimed to investigate these questions by generating mice lacking both CDNF and MANF. Results showed that CDNF-deficient Manf(-/-) mice presented the same phenotypes of growth defect and diabetes as Manf(-/-) mice. In the muscle, CDNF deficiency resulted in increased activation of unfolded protein response (UPR), which was aggravated when MANF was ablated. In the brain, the combined loss of CDNF and MANF did not exacerbate UPR activation caused by the loss of MANF alone. Consequently, CDNF and MANF deficiency in the brain did not cause degeneration of dopamine neurons. In conclusion, CDNF and MANF present functional redundancy in the muscle, but not in the other tissues examined here. Thus, they regulate the UPR in a tissue-specific manner.Peer reviewe
In vivo screening reveals interactions between Drosophila Manf and genes involved in the mitochondria and the ubiquinone synthesis pathway
Background: Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) and Cerebral Dopamine Neurotrophic Factor (CDNF) form an evolutionarily conserved family of neurotrophic factors. Orthologues for MANF/CDNF are the only neurotrophic factors as yet identified in invertebrates with conserved amino acid sequence. Previous studies indicate that mammalian MANF and CDNF support and protect brain dopaminergic system in non-cell-autonomous manner. However, MANF has also been shown to function intracellularly in the endoplasmic reticulum. To date, the knowledge on the interacting partners of MANF/CDNF and signaling pathways they activate is rudimentary. Here, we have employed the Drosophila genetics to screen for potential interaction partners of Drosophila Manf (DmManf) in vivo. Results: We first show that DmManf plays a role in the development of Drosophila wing. We exploited this function by using Drosophila UAS-RNAi lines and discovered novel genetic interactions of DmManf with genes known to function in the mitochondria. We also found evidence of an interaction between DmManf and the Drosophila homologue encoding Ku70, the closest structural homologue of SAP domain of mammalian MANF. Conclusions: In addition to the previously known functions of MANF/CDNF protein family, DmManf also interacts with mitochondria-related genes. Our data supports the functional importance of these evolutionarily significant proteins and provides new insights for the future studies.Peer reviewe
Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes
Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for the survival and proliferation of pancreatic beta-cells in mice, where deletion of MANF resulted in diabetes. The current study aimed at determining whether the concentration of circulating MANF is associated with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found in children 1-9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels compared to patients with moderate MANF concentrations. Our data indicate that increased MANF concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact mechanism behind the increase remains elusive.Peer reviewe
MANF is indispensable for the proliferation and survival of pancreatic beta-cells
All forms of diabetes mellitus (DM) are characterized by the loss of functional pancreatic β cell mass, leading to insufficient insulin secretion. Thus, identification of novel approaches to protect and restore β cells is essential for the development of DM therapies. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-inducible protein, but its physiological role in mammals has remained obscure. We generated MANF-deficient mice that strikingly develop severe diabetes due to progressive postnatal reduction of β cell mass, caused by decreased proliferation and increased apoptosis. Additionally, we show that lack of MANF in vivo in mouse leads to chronic unfolded protein response (UPR) activation in pancreatic islets. Importantly, MANF protein enhanced β cell proliferation in vitro and overexpression of MANF in the pancreas of diabetic mice enhanced β cell regeneration. We demonstrate that MANF specifically promotes β cell proliferation and survival, thereby constituting a therapeutic candidate for β cell protection and regeneration.Peer reviewe
Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle
Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity
The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of ER-stressed neurons in vitro as a general unfolded protein response (UPR) regulator, affecting several UPR pathways simultaneously. Interestingly, MANF does not affect naive neurons. We hypothesize that MANF regulates UPR signaling toward a mode more compatible with neuronal survival. Screening of MANF interacting proteins from two mammalian cell lines revealed a conserved interactome of 15 proteins including several ER chaperones such as GRP78, GRP170, protein disulfide isomerase family A member 1, and protein disulfide isomerase family A member 6. Further characterization confirmed previously published finding that MANF is a cofactor of GRP78 interacting with its nucleotide binding domain. Using microscale thermophoresis and nuclear magnetic resonance spectroscopy, we discovered that MANF is an ATP binding protein and that ATP blocks the MANF-GRP78 interaction. Interestingly, functional analysis of the antiapoptotic properties of MANF mutants in cultured neurons revealed divergent roles of MANF as a GRP78 cofactor and as an antiapoptotic regulator of UPR. We conclude that the co-factor type interaction with GRP78 is dispensable for the survival-promoting activity of MANF in neurons.Peer reviewe
MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain
The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been described as a Survival factor for dopaminergic neurons in vitro, but its expression in mammalian tissues is poorly known. MANF and a homologous Protein, the conserved dopamine neurotrophic factor (CDNF), form a novel evolutionary conserved family of neurotrophic factors. Here we used in situ hybridization and immunohistochemistry to characterize MANF expression in developing and adult mouse. MANF expression was widespread in the nervous system and non-neuronal tissues. In the brain, relatively high MANF levels were detected in the cerebral cortex, hippocampus and cerebellar Purkinje cells. After status epilepticus, Manf mRNA expression was transiently increased in the dentate granule cell layer of hippocampus, thalamic reticular nucleus and in several cortical areas. In contrast, following global forebrain ischemia changes in Manf expression were widespread in the hippocampal formation and more restricted in cerebral cortex. The widespread expression of MANF together with its evolutionary conserved nature and regulation by brain insults suggest that it has important functions both under normal and pathological conditions in many tissue types. (C) 2008 Elsevier Inc. All rights reserved
MANF protects human pancreatic beta cells against stress-induced cell death
There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress. Given this novel association between MANF and beta cell death, we studied the potential of MANF to protect human beta cells against experimentally induced ER stress. Primary human islets were challenged with proinflammatory cytokines, with or without MANF. Cell viability was analysed and global transcriptomic analysis performed. Results were further validated using the human beta cell line EndoC-beta H1. There was increased expression and secretion of MANF in human beta cells in response to cytokines. Addition of recombinant human MANF reduced cytokine-induced cell death by 38% in human islets (p <0.05). MANF knockdown in EndoC-beta H1 cells led to increased ER stress after cytokine challenge. Mechanistic studies showed that the protective effect of MANF was associated with repression of the NF-kappa B signalling pathway and amelioration of ER stress. MANF also increased the proliferation of primary human beta cells twofold when TGF-beta signalling was inhibited (p <0.01). Our studies show that exogenous MANF protein can provide protection to human beta cells against death induced by inflammatory stress. The antiapoptotic and mitogenic properties of MANF make it a potential therapeutic agent for beta cell protection.Peer reviewe