8 research outputs found

    Compartment specific expression of dendritic cell markers in human glomerulonephritis.

    Get PDF
    Macrophages and dendritic cells are heterogenous and highly plastic bone marrow-derived cells that play major roles in renal diseases. We characterized these cells using immunohistochemistry in 55 renal biopsies from control patients or patients with glomerulonephritis as an initial step towards postulating specific roles for these cells in kidney disease. In proliferative glomerulonephritis numerous CD68 positive (pan monocyte, macrophage and dendritic marker) cells were found in both glomeruli and the tubulointerstitial space, however, a myeloid dendritic cell marker (DC-SIGN) was identified only in the tubulointerstitium. A significant number of plasmacytoid dendritic cells (identified as BDCA-2 positive cells) were seen at sites of interstitial inflammation, including follicular aggregates of inflammatory cells. Langerin positive cells (a marker of Langerhans' cells) were detectable but rare. The area of either CD68 or DC-SIGN positive interstitial cells correlated with serum creatinine. Low levels of DC-SIGN, DC-LAMP and MHC class II mRNA were present in the tubulointerstitial space in controls and increased only in that region in proliferative glomerulonephritis. We demonstrate that the CD68 positive cells infiltrating the glomerulus lack dendritic cell markers (reflecting macrophages), whereas in the tubulointerstitial space the majority of CD68 positive cells are also DC-SIGN positive (reflecting myeloid dendritic cells). Their number correlated with serum creatinine, which further emphasizes the significance of interstitial DCs in progressive glomerular diseases

    Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy

    No full text
    Diabetic nephropathy (DN) is a frequent complication in patients with diabetes. Although the majority of DN models and human studies have focused on glomeruli, tubulointerstitial damage is a major feature of DN and an important predictor of renal dysfunction. This study sought to investigate molecular markers of pathogenic pathways in the renal interstitium of patients with DN. Microdissected tubulointerstitial compartments from biopsies with established DN and control kidneys were subjected to expression profiling. Analysis of candidate genes, potentially involved in DN on the basis of common hypotheses, identified 49 genes with significantly altered expression levels in established DN in comparison with controls. In contrast to some rodent models, the growth factors vascular endothelial growth factor A (VEGF-A) and epidermal growth factor (EGF) showed a decrease in mRNA expression in DN. This was validated on an independent cohort of patients with DN by real-time reverse transcriptase-PCR. Immunohistochemical staining for VEGF-A and EGF also showed a reduced expression in DN. The decrease of renal VEGF-A expression was associated with a reduction in peritubular capillary densities shown by platelet-endothelial cell adhesion molecule-1/CD31 staining. Furthermore, a significant inverse correlation between VEGF-A and proteinuria, as well as EGF and proteinuria, and a positive correlation between VEGF-A and hypoxia-inducible factor-la mRNA was found. Thus, in human DN, a decrease of VEGF-A, rather than the reported increase as described in some rodent models, may contribute to the progressive disease. These findings and the questions

    The CDF-II detector: Technical design report

    No full text
    corecore