10,160 research outputs found

    Delivery of Functionality in Complex Food Systems: Physically Inspired Approaches from Nanoscale to Microscale, Wageningen 18-21 October 2009

    Get PDF
    The Wageningen Delivery of Functionality symposium covered all aspects involved with food structural design to arrive at high-quality foods which meet demanding customer expectations and regulatory requirements. The symposium integrated aspects from the structural organization of foods at molecular and supramolecular scales to dedicated techniques required to describe and visualize such structures, the gastro-intestinal events and how to model these in a laboratory setting, and finally the impact those food structures and ingredients have on the consumer’s physiology and on the human perception. As an interdisciplinary platform, bringing together more than 160 researchers from academia and industry, the symposium meanwhile fulfills an important role in the food science communit

    Why the Tsirelson bound?

    Full text link
    Wheeler's question 'why the quantum' has two aspects: why is the world quantum and not classical, and why is it quantum rather than superquantum, i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable answer to this question proposed by Pawlowski et al (2009), who provide an information-theoretic derivation of the Tsirelson bound from a principle they call 'information causality.'Comment: 17 page

    The smallest refrigerators can reach maximal efficiency

    Full text link
    We investigate whether size imposes a fundamental constraint on the efficiency of small thermal machines. We analyse in detail a model of a small self-contained refrigerator consisting of three qubits. We show analytically that this system can reach the Carnot efficiency, thus demonstrating that there exists no complementarity between size and efficiency.Comment: 9 pages, 1 figure. v2: published versio

    Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma

    Full text link
    The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC) has been characterized by near-perfect fluid behavior. We demonstrate that this stands in contradiction to the identification of QCD quasi-particles with the thermodynamic degrees of freedom in the early (fluid) stage of heavy ion collisions. The empirical observation of constituent quark ``nqn_q'' scaling of elliptic flow is juxtaposed with the lack of such scaling behavior in hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons. A ``quasi-particle transport'' time stage after viscous effects break down the hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile these apparent contradictions. However, without a detailed understanding of the transitions between these stages, the ``nqn_q'' scaling is not a necessary consequence of this prescription. Also, if the duration of this stage is too short, it may not support well defined quasi-particles. By comparing and contrasting the coalescence of quarks into hadrons with the similar process of producing light nuclei from nucleons, it is shown that the observation of ``nqn_{q}'' scaling in the final state does not necessarily imply that the constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure

    Photoemission spectra of many-polaron systems

    Full text link
    The cross over from low to high carrier densities in a many-polaron system is studied in the framework of the one-dimensional spinless Holstein model, using unbiased numerical methods. Combining a novel quantum Monte Carlo approach and exact diagonalization, accurate results for the single-particle spectrum and the electronic kinetic energy on fairly large systems are obtained. A detailed investigation of the quality of the Monte Carlo data is presented. In the physically most important adiabatic intermediate electron-phonon coupling regime, for which no analytical results are available, we observe a dissociation of polarons with increasing band filling, leading to normal metallic behavior, while for parameters favoring small polarons, no such density-driven changes occur. The present work points towards the inadequacy of single-polaron theories for a number of polaronic materials such as the manganites.Comment: 15 pages, 13 figures; final version, accepted for publication in Phys. Rev.

    Entanglement capabilities of non-local Hamiltonians

    Get PDF
    We quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We give a procedure for optimizing the generation of entanglement. We also show that a Hamiltonian can create more entanglement if one uses auxiliary systems.Comment: replaced with published version, 4 pages, no figure

    Optimal simulation of two-qubit Hamiltonians using general local operations

    Get PDF
    We consider the simulation of the dynamics of one nonlocal Hamiltonian by another, allowing arbitrary local resources but no entanglement nor classical communication. We characterize notions of simulation, and proceed to focus on deterministic simulation involving one copy of the system. More specifically, two otherwise isolated systems AA and BB interact by a nonlocal Hamiltonian HHA+HBH \neq H_A+H_B. We consider the achievable space of Hamiltonians HH' such that the evolution eiHte^{-iH't} can be simulated by the interaction HH interspersed with local operations. For any dimensions of AA and BB, and any nonlocal Hamiltonians HH and HH', there exists a scale factor ss such that for all times tt the evolution eiHste^{-iH'st} can be simulated by HH acting for time tt interspersed with local operations. For 2-qubit Hamiltonians HH and HH', we calculate the optimal ss and give protocols achieving it. The optimal protocols do not require local ancillas, and can be understood geometrically in terms of a polyhedron defined by a partial order on the set of 2-qubit Hamiltonians.Comment: (1) References to related work, (2) protocol to simulate one two-qudit Hamiltonian with another, and (3) other related results added. Some proofs are simplifie

    Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials

    Full text link
    We study the optical properties of metamaterials made from cut-wire pairs or plate pairs. We obtain a more pronounced optical response for arrays of plate pairs -- a geometry which also eliminates the undesired polarization anisotropy of the cut-wire pairs. The measured optical spectra agree with simulations, revealing negative magnetic permeability in the range of telecommunications wavelengths. Thus, nanoscopic plate pairs might serve as an alternative to the established split-ring resonator design.Comment: 3 pages, 4 figures, submitted to Opt. Let

    Consistent Application of Maximum Entropy to Quantum-Monte-Carlo Data

    Full text link
    Bayesian statistics in the frame of the maximum entropy concept has widely been used for inferential problems, particularly, to infer dynamic properties of strongly correlated fermion systems from Quantum-Monte-Carlo (QMC) imaginary time data. In current applications, however, a consistent treatment of the error-covariance of the QMC data is missing. Here we present a closed Bayesian approach to account consistently for the QMC-data.Comment: 13 pages, RevTeX, 2 uuencoded PostScript figure
    corecore