361 research outputs found
On a three-body confinement force in hadron spectroscopy
Recently it has been argued that a three-body colour confinement interaction
can affect the stability condition of a three-quark system and the spectrum of
a tetraquark described by any constituent quark model. Here we discuss the role
of a three-body colour confinement interaction in a simple quark model and
present some of its implications for the spectra of baryons, tetraquarks and
six-quark systems.Comment: 19 pages (RevTeX), addition of new material regarding the NN
interaction, more accurate discussion of the baryonic case, accepted for
publication in Phys. Rev.
On Inflation with Non-minimal Coupling
A simple realization of inflation consists of adding the following operators
to the Einstein-Hilbert action: (partial phi)^2, lambda phi^4, and xi phi^2 R,
with xi a large non-minimal coupling. Recently there has been much discussion
as to whether such theories make sense quantum mechanically and if the inflaton
phi can also be the Standard Model Higgs. In this note we answer these
questions. Firstly, for a single scalar phi, we show that the quantum field
theory is well behaved in the pure gravity and kinetic sectors, since the
quantum generated corrections are small. However, the theory likely breaks down
at ~ m_pl / xi due to scattering provided by the self-interacting potential
lambda phi^4. Secondly, we show that the theory changes for multiple scalars
phi with non-minimal coupling xi phi dot phi R, since this introduces
qualitatively new interactions which manifestly generate large quantum
corrections even in the gravity and kinetic sectors, spoiling the theory for
energies > m_pl / xi. Since the Higgs doublet of the Standard Model includes
the Higgs boson and 3 Goldstone bosons, it falls into the latter category and
therefore its validity is manifestly spoiled. We show that these conclusions
hold in both the Jordan and Einstein frames and describe an intuitive analogy
in the form of the pion Lagrangian. We also examine the recent claim that
curvature-squared inflation models fail quantum mechanically. Our work appears
to go beyond the recent discussions.Comment: 14 pages, 2 figures. Version 2: Clarified findings and improved
wording. Elaborated important sections and removed an unnecessary section.
Added references. Version 3: Updated towards JHEP version. Version 4: Final
JHEP versio
Three-body confinement force in a realistic constituent quark model
We show that in realistic constituent quark models based on a two-body
confinement interaction color states appear in the middle of the experimentally
known spectrum. To avoid this situation we implement a three-body confinement
interaction, introduced on an algebraic basis, into a semirelativistic version
of the Goldstone-boson-exchange constituent quark model and by solving the
Faddeev equations we show that this interaction can increase the gap between
singlet and colour states, such as the latter can be ignored and the known
baryons can be described as systems. We analyze the effect of a -
and a Y-shape three-body interaction.Comment: 14 pages, 3 figures, revised version to appear in Nucl. Phys.
Non-minimal coupling of the Higgs boson to curvature in an inflationary universe
In the absence of new physics around 10^10 GeV, the electroweak vacuum is at best metastable. This represents a major challenge for high scale in ationary models as, during the early rapid expansion of the universe, it seems difficult to understand how the Higgs vacuum would not decay to the true lower vacuum of the theory with catas- trophic consequences if inflation took place at a scale above 10^10 GeV. In this paper we show that the non-minimal coupling of the Higgs boson to curvature could solve this problem by generating a direct coupling of the Higgs boson to the inflationary potential thereby stabilizing the electroweak vacuum. For specific values of the Higgs field initial condition and of its non-minimal coupling, inflation can drive the Higgs field to the electroweak vacuum quickly during inflation
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV
A search for pair-produced charged Higgs bosons is performed with the L3
detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV,
corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a
charm and a strange quark or into a tau lepton and its associated neutrino are
considered. The observed events are consistent with the expectations from
Standard Model background processes. A lower limit of 65.5 GeV on the charged
Higgs mass is derived at 95 % confidence level, independent of the decay
branching ratio Br(H^{+/-} -> tau nu)
Inflation and dark matter in two Higgs doublet models
We consider the Higgs inflation in the extension of the Standard Model with
two Higgs doublets coupled to gravity non-minimally. In the presence of an
approximate global U(1) symmetry in the Higgs sector, both radial and angular
modes of neutral Higgs bosons drive inflation where large non-Gaussianity is
possible from appropriate initial conditions on the angular mode. We also
discuss the case with single-field inflation for which the U(1) symmetry is
broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity
and stability conditions restrict the parameter space of the Higgs quartic
couplings at low energy in both multi- and single-field cases. Focusing on the
inert doublet models where Z_2 symmetry remains unbroken at low energy, we show
that the extra neutral Higgs boson can be a dark matter candidate consistent
with the inflationary constraints. The doublet dark matter is always heavy in
multi-field inflation while it can be light due to the suppression of the
co-annihilation in single-field inflation. The implication of the extra quartic
couplings on the vacuum stability bound is also discussed in the light of the
recent LHC limits on the Higgs mass.Comment: (v1) 28 pages, 8 figures; (v2) 29 pages, a new subsection 3.3 added,
references added and typos corrected, to appear in Journal of High Energy
Physic
Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae
Among adults of closely related species, a trend in craniofacial evolutionary allometry (CREA) for larger taxa to be long-faced and smaller ones to have paedomorphic aspects, such as proportionally smaller snouts and larger braincases, has been demonstrated in some mammals and two bird lineages. Nevertheless, whether this may represent a ‘rule’ with few exceptions is still an open question. In this context, Felidae is a particularly interesting family to study because, although its members are short-faced, previous research did suggest relative facial elongation in larger living representatives. Using geometric morphometrics, based on two sets of anatomical landmarks, and traditional morphometrics, for comparing relative lengths of the palate and basicranium, we performed a series of standard and comparative allometric regressions in the Felidae and its two subfamilies. All analyses consistently supported the CREA pattern, with only one minor exception in the geometric morphometric analysis of Pantherinae: the genus Neofelis. With its unusually long canines, Neofelis species seem to have a relatively narrow cranium and long face, despite being smaller than other big cats. In spite of this, overall, our findings strengthen the possibility that the CREA pattern might indeed be a ‘rule’ among mammals, raising questions on the processes behind it and suggesting future directions for its study
- …