178 research outputs found

    Integration of technologies for understanding the functional relationship between reef habitat and fish growth and production

    Get PDF
    Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs

    Modulation of a protein free-energy landscape by circular permutation

    Get PDF
    Circular permutations usually retain the native structure and function of a protein while inevitably perturb its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, while subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, where one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild-type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed

    Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

    Get PDF
    In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO(2) in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO(2) on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO(2) mediated through increased litter C:N ratio. After eight years of treatment, however, the CO(2)-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term

    Evaluation of coronary blood flow velocity during cardiac arrest with circulation maintained through mechanical chest compressions in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanical chest compressions (CCs) have been shown capable of maintaining circulation in humans suffering cardiac arrest for extensive periods of time. Reports have documented a visually normalized coronary blood flow during angiography in such cases (TIMI III flow), but it has never been actually measured. Only indirect measurements of the coronary circulation during cardiac arrest with on-going mechanical CCs have been performed previously through measurement of the coronary perfusion pressure (CPP). In this study our aim was to correlate average peak coronary flow velocity (APV) to CPP during mechanical CCs.</p> <p>Methods</p> <p>In a closed chest porcine model, cardiac arrest was established through electrically induced ventricular fibrillation (VF) in eleven pigs. After one minute, mechanical chest compressions were initiated and then maintained for 10 minutes upon which the pigs were defibrillated. Measurements of coronary blood flow in the left anterior descending artery were made at baseline and during VF with a catheter based Doppler flow fire measuring APV. Furthermore measurements of central (thoracic) venous and arterial pressures were also made in order to calculate the theoretical CPP.</p> <p>Results</p> <p>Average peak coronary flow velocity was significantly higher compared to baseline during mechanical chests compressions and this was observed during the entire period of mechanical chest compressions (12 - 39% above baseline). The APV slowly declined during the 10 min period of mechanical chest compressions, but was still higher than baseline at the end of mechanical chest compressions. CPP was simultaneously maintained at > 20 mmHg during the 10 minute episode of cardiac arrest.</p> <p>Conclusion</p> <p>Our study showed good correlation between CPP and APV which was highly significant, during cardiac arrest with on-going mechanical CCs in a closed chest porcine model. In addition APV was even higher during mechanical CCs compared to baseline. Mechanical CCs can, at minimum, re-establish coronary blood flow in non-diseased coronary arteries during cardiac arrest.</p

    Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene

    Get PDF
    Integrated three-pulse stimulated echo peak shift data are compared for N,N-bis-dimethylphenyl-1-2,4,6,8-perylenetetracarbonyl diamide and poly[2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] (MEH-PPV) in toluene solvent. These two molecules represent a model probe of solvation dynamics and a prototypical soluble, electroluminescent conjugated polymer, respectively. The results indicate that it is inappropriate to describe the linear absorption spectrum of MEH-PPV as being primarily inhomogeneously broadened. Conformational disorder along the polymer backbone gives rise to an ensemble of polyene electronic oscillators that are strongly coupled to each other. As a consequence, fluctuations in the electronic energy gap on a time-scale of 50-fs derive primarily from bath-mediated exciton scattering. The data reported here provide an explanation for the broad, structureless electronic absorption of MEH-PPV. This interpretation provides a valuable insight into the nature of the initial photoexcited state, and the efficient population of the emissive state

    Discrete Kinetic Models from Funneled Energy Landscape Simulations

    Get PDF
    A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an “inside-out”, nucleation-propagation like character

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement

    Is There a Place for Dietary Fiber Supplements in Weight Management?

    Get PDF
    Inadequate dietary fiber intake is common in modern diets, especially in children. Epidemiological and experimental evidence point to a significant association between a lack of fiber intake and ischemic heart disease, stroke atherosclerosis, type 2 diabetes, overweight and obesity, insulin resistance, hypertension, dyslipidemia, as well as gastrointestinal disorders such as diverticulosis, irritable bowel disease, colon cancer, and cholelithiasis. The physiological effects of fiber relate to the physical properties of volume, viscosity, and water-holding capacity that the fiber imparts to food leading to important influences over the energy density of food. Beyond these physical properties, fiber directly impacts a complex array of microbiological, biochemical, and neurohormonal effects directly through modification of the kinetics of digestion and through its metabolism into constituents such as short chain fatty acids, which are both energy substrates and important enteroendocrine ligands. Of particular interest to clinicians is the important role dietary fiber plays in glucoregulation, appetite, and satiety. Supplementation of the diet with highly functional fibers may prove to play an important role in long-term obesity management

    Postoperative outcomes in oesophagectomy with trainee involvement

    Get PDF
    BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery
    corecore