1,325 research outputs found

    Bilayer ice and alternate liquid phases of confined water

    Get PDF
    We report results from molecular dynamics simulations of the freezing and melting, at ambient temperature (T=300 K), of a bilayer of liquid water induced by either changing the distance between two confining parallel walls at constant lateral pressure or by lateral compression at constant plate separation. Both transitions are found to be first order. The system studied consisted of 1200 water molecules that were described by the TIP5P model. The in-plane symmetry of the oxygen atoms in the ice bilayer was found to be rhombic with a distorted in-registry arrangement. Above and below the stability region of the ice bilayer we observed two bilayer phases of liquid water that differ in the local ordering at the level of the second shell of nearest neighbors and in the density profile normal to the plane, yielding two liquid phases with different densities. These results suggest the intriguing possibility of a liquid-liquid transition of water, confined to a bilayer, at regions where the ice bilayer is unstable with respect to either of the liquid phases. In addition, we find that under the same conditions, water confined to 3-8 layers remains in the liquid phase (albeit stratification of the transverse density profile) with values of the lateral diffusion coefficient comparable to that of the bulk. (C) 2003 American Institute of Physics

    Precipitating Condensation Clouds in Substellar Atmospheres

    Full text link
    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and sedimentation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with results from previous methods. An adjustable parameter describing the efficiency of sedimentation allows the new model to span the range of predictions made by previous models. Calculations for the Jovian ammonia cloud are consistent with observations. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet. We find that precipitating cloud decks naturally account for the characteristic trends seen in the spectra and colors of L- and T-type ultracool dwarfs.Comment: 33 pages including 7 figures; AASTex; Accepted for publication in Astrophysical Journal, tentatively scheduled for v556 n1 July 20, 2001 . Plotting error in Fig 5 corrected; slight modification to Fig 5 dicussion in tex

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    Evolution of the nuclear modification factors with rapidity and centrality in d+Au collisions at $\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We report on a study of the transverse momentum dependence of nuclear modification factors RdAuR_{dAu} for charged hadrons produced in deuteron + gold collisions at sNN=200\sqrt{s_{NN}}= 200GeV, as a function of collision centrality and of the pseudorapidity (η=0,1,2.2,3.2\eta = 0,1,2.2,3.2) of the produced hadrons. We find significant and systematic decrease of RdAuR_{dAu} with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.Comment: Four pages, four figures. Published in PRL. Figures 1 and 2 have been updated, and several changes made to the tex

    Recent Results from the BRAHMS Experiment

    Full text link
    We present recent results obtained by the BRAHMS experiment at the Relativistic Heavy Ion Collider (RHIC) for the systems of Au + Au and Cu + Cu at \rootsnn{200} and at 62.4 GeV, and p + p at \rootsnn{200}. Nuclear modification factors for Au + Au and Cu + Cu collisions are presented. Analysis of anti-particle to particle ratios as a function of rapidity and collision energy reveal that particle populations at the chemical freeze-out stage for heavy-ion reactions at and above SPS energies are controlled by the baryon chemical potential. From the particle spectra we deduce significant radial expansion (β\beta \approx 0.75), as expected for systems created with a large initial energy density. We also measure the elliptic flow parameter v2v_2 versus rapidity and \ptn. We present rapidity dependent p/πp/\pi ratios within 0<y<30 < y < 3 for Au + Au and Cu + Cu at \rootsnn{200}. \Raa is found to increase with decreasing collision energy, decreasing system size, and when going towards more peripheral collisions. However, \Raa shows only a very weak dependence on rapidity (for 0<y<3.20 < y < 3.2), both for pions and protons.Comment: 16 pages and 14 figures, proceedings for plenary talk at Quark Matter 2005, Budapest, Hungar

    Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV

    Full text link
    Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80% centrality range; added additional discussion on centrality selection bia

    Scanning the phases of QCD with BRAHMS

    Full text link
    BRAHMS has the ability to study relativistic heavy ion collisions from the final freeze-out of hadrons all the way back to the initial wave-function of the gold nuclei. This is accomplished by studying hadrons with a very wide range of momenta and angles. In doing so we can scan various phases of QCD, from a hadron gas, to a quark gluon plasma and perhaps to a color glass condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004 conferenc

    High Pt Hadron Spectra at High Rapidity

    Full text link
    We report the measurement of charged hadron production at different pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at sqrtsNNsqrt{s_{NN}} = 200GeV at RHIC. The nuclear modification factors RdAuR_{dAu} and RcpR_{cp} are used to investigate new behaviors in the deuteron+gold system as function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos corrected and one reference adde

    Nuclear Modification Factor for Charged Pions and Protons at Forward Rapidity in Central Au+Au Collisions at 200 GeV

    Get PDF
    We present spectra of charged pions and protons in 0-10% central Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV at mid-rapidity (y=0y=0) and forward pseudorapidity (η=2.2\eta=2.2) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both y=0y=0 and η=2.2\eta=2.2 exhibit suppression for charged pions but not for (anti-)protons at intermediate pTp_T. The pˉ/π\bar{p}/\pi^- ratios have been measured up to pT3p_T\sim 3 GeV/cc at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate pTp_T range are (anti-)protons at both mid-rapidity and η=2.2\eta = 2.2
    corecore