35 research outputs found

    Selective Postsynaptic Co-localization of MCT2 with AMPA Receptor GluR2/3 Subunits at Excitatory Synapses Exhibiting AMPA Receptor Trafficking

    Get PDF
    MCT2 is the main neuronal monocarboxylate transporter needed by neurons if they are to use lactate as an additional energy substrate. Previous evidence suggested that some MCT2 could be located in postsynaptic elements of glutamatergic synapses. Using post-embedding electron microscopic immunocytochemistry, it is demonstrated that MCT2 is present at postsynaptic density of asymmetric synapses, in the stratum radiatum of both rat hippocampal CA1 and CA3 regions, as well as at parallel fibre-Purkinje cell synapses in mouse cerebellum. MCT2 levels were significantly lower at mossy fibre synapses on CA3 neurons, and MCT2 was almost absent from symmetric synapses on CA1 pyramidal cells. It could also be demonstrated using quantitative double-labeling immunogold cytochemistry that MCT2 and AMPA receptor GluR2/3 subunits have a similar postsynaptic distribution at asymmetric synapses with high levels expressed within the postsynaptic density. In addition, as for AMPA receptors, a significant proportion of MCT2 is located on vesicular membranes within the postsynaptic spine, forming an intracellular pool available for a putative postsynaptic endo/exocytotic trafficking at these excitatory synapses. Altogether, the data presented provide evidence for MCT2 expression in the postsynaptic density area at specific subsets of glutamatergic synapses, and also suggest that MCT2, like AMPA receptors, could undergo membrane traffickin

    Rev1 contributes to proper mitochondrial function via the PARP-NAD(+)-SIRT1-PGC1 alpha axis

    Get PDF
    Abstract Nucleic acids, which constitute the genetic material of all organisms, are continuously exposed to endogenous and exogenous damaging agents, representing a significant challenge to genome stability and genome integrity over the life of a cell or organism. Unrepaired DNA lesions, such as single- and double-stranded DNA breaks (SSBs and DSBs), and single-stranded gaps can block progression of the DNA replication fork, causing replicative stress and/or cell cycle arrest. However, translesion synthesis (TLS) DNA polymerases, such as Rev1, have the ability to bypass some DNA lesions, which can circumvent the process leading to replication fork arrest and minimize replicative stress. Here, we show that Rev1-deficiency in mouse embryo fibroblasts or mouse liver tissue is associated with replicative stress and mitochondrial dysfunction. In addition, Rev1-deficiency is associated with high poly(ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via the PARP-NAD+-SIRT1-PGC1α axis

    Meeting Summary of The NYO3 5th NO-Age/AD Meeting and the 1st Norway-UK Joint Meeting on Aging and Dementia:Recent Progress on the Mechanisms and Interventional Strategies

    Get PDF
    Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.</p

    Molecular anatomy of adult mouse leptomeninges.

    Get PDF
    Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology

    Lactate transport and signaling in the brain: Potential therapeutic targets and roles in body-brain interaction

    No full text
    Lactate acts as a ‘buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a ‘volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise

    Mutasjon i transportørgen kan gi ketoacidose

    No full text

    Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking

    No full text
    MCT2 is the main neuronal monocarboxylate transporter needed by neurons if they are to use lactate as an additional energy substrate. Previous evidence suggested that some MCT2 could be located in postsynaptic elements of glutamatergic synapses. Using post-embedding electron microscopic immunocytochemistry, it is demonstrated that MCT2 is present at postsynaptic density of asymmetric synapses, in the stratum radiatum of both rat hippocampal CA1 and CA3 regions, as well as at parallel fibre-Purkinje cell synapses in mouse cerebellum. MCT2 levels were significantly lower at mossy fibre synapses on CA3 neurons, and MCT2 was almost absent from symmetric synapses on CA1 pyramidal cells. It could also be demonstrated using quantitative double-labeling immunogold cytochemistry that MCT2 and AMPA receptor GluR2/3 subunits have a similar postsynaptic distribution at asymmetric synapses with high levels expressed within the postsynaptic density. In addition, as for AMPA receptors, a significant proportion of MCT2 is located on vesicular membranes within the postsynaptic spine, forming an intracellular pool available for a putative postsynaptic endo/exocytotic trafficking at these excitatory synapses. Altogether, the data presented provide evidence for MCT2 expression in the postsynaptic density area at specific subsets of glutamatergic synapses, and also suggest that MCT2, like AMPA receptors, could undergo membrane trafficking
    corecore