36 research outputs found

    Towards anode with low indium content as effective anode in organic solar cells

    Get PDF
    In2O3 thin films (100 nm thick) have been deposited by reactive evaporation of indium, in an oxygen partial atmosphere. Conductive (σ = 3.5×103 S/cm) and transparent films are obtained using the following experimental conditions: oxygen partial pressure = 1×10−1 Pa, substrate temperature = 300 ◦C and deposition rate = 0.02 nm/s. Layers of this In2O3 thick of 5 nm have been introduced in AZO/In2O3 and FTO/In2O3 multilayer anode structures. The performances of organic photovoltaic cells, based on the couple CuPc/C60, are studied using the anode as parameter. In addition to these bilayers, other structures have been used as anode: AZO, FTO, AZO/In2O3/MoO3, FTO/In2O3/MoO3 and FTO/MoO3. It is shown that the use of the In2O3 film in the bilayer structures improves significantly the cell performances. However the open circuit voltage is quite small while better efficiencies are achieved when MoO3 is present. These results are discussed in the light of surface roughness and surface work function of the different anodes

    On the ultrathin gold film used as buffer layer at the transparent conductive anode/organic electron donor interface

    Get PDF
    Previously, we have shown that a gold thin film of only 0.5 nm introduced at the interface between the indium tin oxide or ZnO anode and the organic electron donor in organic photovoltaic cells induces a strong improvement of the cell efficiency. Of course a thickness of 0.5 nm corresponds only to an averaged thickness, the films being too thin to be continuous. For a clear understanding of the physical mechanisms that are responsible for this improved behaviour, it is important to know the fractional coverage and the island height of this thin Au film. In the present work, we have used two different techniques, such as treated scanning electron microscope images and analysis of the inelastic part of peaks of X-ray photoelectron spectroscopy spectra, to estimate the gold coverage and island height of the transparent conductive anode. There is an excellent agreement between the results achieved by both methods. Only 15% of the anode is covered, which proves the high efficiency of gold as an anode buffer layer in organic photovoltaic devices

    New Compounds Measured by Fluorescence Spectroscopy. Amino-Fluorene-Thiophene Derivatives to Be Proposed as Polarity Indicators.

    Get PDF
    The solvatochromic effect is high in conjugate compounds and easy to observe by the colour change emitted when the solutions are exposed to UV light. It was found in a series of aminofluorene thiophene derivatives, previously synthesized, that irradiating at different wavelengths, the same pattern is obtained, i.e. a dual behaviour in the solvatochromism of the studied compounds. For each one, a bathochromic and hypsochromic effect exists, in polar and nonpolar solvents, respectively. Wavelength vs. polarity index plots clearly showed the abovementioned dual behaviour as well as the improved linearity in its plots. Amidst the wavelengths at which each compound is excited in each solvent, 280 nm was selected as the fixed wavelength for the measurements; (E)-9,9-diethyl-N-hexyl-N-phenyl-7-(2-(thiofen-2-yl)vinyl)-9H-fluoren-2-amine (M6-6) exhibits better linearity as compared to the other studied compounds, being the best to be proposed as polarity sensor or indicator

    Improvement in the Lifetime of Planar Organic Photovoltaic Cells through the Introduction of MoO3 into Their Cathode Buffer Layers

    Get PDF
    Recently, MoO3, which is typically used as an anode buffer layer in organic photovoltaic cells (OPVCs), has also been used as a cathode buffer layer (CBL). Here, we check its efficiency as a CBL using a planar heterojunction based on the CuPc/C60 couple. The CBL is a bi-layer tris-(8-hydroxyquinoline) aluminum (Alq3)/MoO3. We show that the OPVC with MoO3 in its CBL almost immediately exhibits lower efficiency than those using Alq3 alone. Nevertheless, the OPVCs increase their efficiency during the first five to six days of air exposure. We explain this evolution of the efficiency of the OPVCs over time through the variation in the MoO3 work function due to air contamination. By comparison to a classical OPVC using a CBL containing only Alq3, if it is found that the initial efficiency of the latter is higher, this result is no longer the same after one week of exposure to ambient air. Indeed, this result is due to the fact that the lifetime of the cells is significantly increased by the presence of MoO3 in the CBL

    Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances

    No full text
    In order to grow semi-transparent organic photovoltaic cells (OPVs), multilayer dielectric/metal/dielectric (D/M/D) structures are used as a transparent top electrode in inverted OPVs. Two different electrodes are probed, MoO3/Ag/MoO3 and MoO3/Ag/Cu:Ag/ZnS. Both of them exhibit high transmission in visible and small sheet resistance. Semi-transparent inverted OPVs using these electrodes as the top anode are probed. The active organic layers consist in the SubPc/C60 couple. The dependence of the OPV performances on the top electrode was investigated. The results show that far better results are achieved when the top anode MoO3/Ag/MoO3 is used. The OPV efficiency obtained was only 20% smaller in comparison with the opaque OPV, but with a transparency of nearly 50% in a broad range of the visible light (400–600 nm). In the case of MoO3/Ag/Cu:Ag/ZnS top anode, the small efficiency obtained is due to the presence of some Cu diffusion in the MoO3 layer, which degrades the contact anode/organic material

    Influence of the presence of Ca in the cathode buffer layer on the performance and stability of organic photovoltaic cells using a branched sexithienylenevinylene oligomer as electron donor

    Get PDF
    International audienceA new branched sexithienylene vinylene oligomer, (E)-bis-1,2-(5,5″-dimethyl-(2,2′:3′,2″-terthiophene)vinylene (BSTV), was synthesized, characterized, and used as the electron donor in a planar heterojunction organic photovoltaic cell (OPVC). The OPVC utilized fullerene (C60) as the electron acceptor, ITO-coated glass as the anode, and aluminum as the cathode. Hybrid electrode buffer layers of MoO3/CuI on the anode side and of Alq3/Ca on the cathode side were used. This shows the effectiveness of the bilayer Alq3/Ca as a cathode buffer layer. The thickness of the Ca layer and its effect on the performance and lifetime of the OPVCs were studied. It was found that an Alq3/Ca structure with 6 nm of Alq3&nbsp;and 3 nm of Ca has an efficiency (η) of 2.28%, while a device without Ca has an efficiency of only 1.47%. Combining an optimized thickness of the new donor BSTV (22 nm) together with the bilayer cathode buffer layer, a device having an open-circuit voltage,&nbsp;Voc&nbsp;of 0.84 V, a short-circuit current,&nbsp;Jsc&nbsp;of 3.60 mA cm−2, and a fill factor, FF of 50% was achieved. However, the efficiency of the OPV with Ca decreases rapidly during the first hours of air exposure, resulting in device performance that is similar to a device fabricated without Ca. After this initial degradation, device performance for both types of OPV evolves similarly with continued air exposure.</p

    Alkyl thiophene vinylene electropolymerization in C8mimPF6, potential use in solar cells

    Get PDF
    We report the electrosynthesis of a novel semiconductor polymer based on alkyl vinylthiophene derivative in the presence of an ionic liquid (IL). The polymerization was performed under galvanostatic conditions and the polymer was studied as potential donor component of a multilayer heterojunction organic solar cell (OSC). The monomer used was (E)-1,2-di-(3-octyl-2-thienyl) vinylene (OTV) and the IL used for the electropolymerization was 1-octyl-3-methylimidazole hexafluorophosphate C8mimPF6. Optical properties, stability and morphology of the polymer were analyzed using FT-IR, UV-vis, Raman and XPS spectroscopy. Voltammetry analysis and scanning electron microscopy (SEM-EDX) were also performed on the polymer. The OSC assembled with the polymer of OTV was used as electro donor and C60 as acceptor. Molybdenum trioxide (MoO3) and bathocuproine (BCP) were used as buffer layer between anode and cathode respectively. I-V curves, in the dark and under AM 1.5 solar simulator were performed to measure its efficiency.publishedVersionPeer reviewe

    Effect of the thickness of the MoO3 layers on optical properties of MoO3/Ag/MoO3 multilayer structures

    Get PDF
    International audienceThe electrical and optical properties of MoO3/Ag/MoO3 multilayer structures have been studied using the Ag deposition rate and layer thicknesses as parameters. When the silver film is deposited at 0.20 nm/s rate, the silver layer thickness necessary to achieve the percolation threshold of the resistivity ρ towards conductive structures is 10 nm. Below 10 nm, the films are semiconductor and above the films are conductors. In the present work, the variation of the thicknesses of top and bottom MoO3 layers is shown to strongly modify the optical properties of the multilayer structures. By using a Ag thickness of 10 nm, we demonstrate an increasing of the transmittance of the MoO3/Ag/MoO3 structures by optimizing the MoO3 layers thicknesses. When the MoO3 bottom layer is 20 nm thick, and the MoO3 top layer is 35 nm, the maximum transmission is 86% at the wavelength of 465 nm, while the averaged transmission in the visible range (350 nm-800 nm) is 70%. The best measured conductivity, σ = 1.1 × 105 (Ω cm)-1, corresponds also to this MoO3 (20 nm)/Ag (10 nm)/MoO3 (35 nm) structure. A good qualitative agreement between the theoretical calculations of the variation of the optical transmittance and reflectance of the MoO3/Ag/MoO3 structures is also highlighted

    Ternary Planar Heterojunction Organic Solar Cells Based on the Ternary Active Layers: α-6T/AlPcCl/C<sub>60</sub>

    No full text
    Ternary planar heterojunction organic solar cells (PHJ-OPVs) were fabricated using three organic small molecules, alpha-sexithiophene (α-6T), aluminum phthalocyanine chloride (AlPcCl) and fullerene (C60). These molecules can be easily sublimated under a vacuum; they have complementary optical absorption spectra and their energy band structure alignment is favorable for electronic charge transfers. Moreover, α-6T and AlPcCl have almost the same HOMO, which is desirable to avoid any decrease in open circuit voltage. The AlPcCl intercalated layer bridges the energy levels of the electron donor, α-6T, and the electron acceptor, C60, which facilitates charge transport through the energy cascade effect. Moreover, the charge carrier mobility measurements of AlPcCl, using the space charge limited current method, demonstrated that it iss ambipolar. All these properties combine to improve the power conversion efficiency (PCE) of PHJ-OPVs by moving from binary structures (α-6T/C60, α-6T/AlPcCl and AlPcCl/C60) to ternary ones (α-6T/AlPcCl/C60). We show, in this study, that both interfaces of the ternary PHJ-OPVs are efficient for carrier separation. After optimization of the different layer thickness, we show that, by comparing the optimum efficiencies of the binary PHJ-OPVs, the realization of ternary PHJ-OPVs, based on the active layers α-6T/AlPcCl/C60, using the following optimized method, allows us to achieve a PCE of 4.33%

    Deposition of nickel oxide by direct current reactive sputtering Effect of oxygen partial pressure

    No full text
    International audienceNickel oxide thin films were deposited by Direct Current magnetron reactive sputtering from Ni target onto SnO2:F conductive glass substrates. The process was carried out without intentional heating, in an argon/oxygen gas mixture with various oxygen contents and discharge currents. The polycrystalline NiO thin films were deposited with controlled growth of the structure along [111] and [200] crystallographic directions for chosen conditions. Morphology of as-deposited films was found to depend on the preferentially oriented NiO crystals. Moreover, on the basis of discharge voltage as a function of the O-2 partial pressure for a constant discharge current, we present here the method to estimate the deposition conditions allowing us to achieve the desired preferential growth of transparent p-type semiconductor NiO, by Direct Current magnetron reactive sputtering
    corecore