5,261 research outputs found

    Determining the effects of cattle grazing treatments on Yosemite toads (Anaxyrus [=Bufo] canorus) in montane meadows.

    Get PDF
    Amphibians are experiencing a precipitous global decline, and population stability on public lands with multiple uses is a key concern for managers. In the Sierra Nevada Mountains (California, USA), managers have specifically identified livestock grazing as an activity that may negatively affect Yosemite toads due to the potential overlap of grazing with toad habitat. Grazing exclusion from Yosemite toad breeding and rearing areas and/or entire meadows have been proposed as possible management actions to alleviate the possible impact of cattle on this species. The primary objective of this study was to determine if different fencing treatments affect Yosemite toad populations. We specifically examined the effect of three fencing treatments on Yosemite toad breeding pool occupancy, tadpoles, and young of the year (YOY). Our hypothesis was that over the course of treatment implementation (2006 through 2010), Yosemite toad breeding pool occupancy and early life stage densities would increase within two fencing treatments relative to actively grazed meadows due to beneficial changes to habitat quality in the absence of grazing. Our results did not support our hypothesis, and showed no benefit to Yosemite toad presence or early life stages in fenced or partially fenced meadows compared to standard USDA Forest Service grazing levels. We found substantial Yosemite toad variation by both meadow and year. This variation was influenced by meadow wetness, with water table depth significant in both the tadpole and YOY models

    Chapter 5: Evidence

    Get PDF

    NASA advanced aeronautics design solar powered remotely piloted vehicle

    Get PDF
    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process

    New approaches to model and study social networks

    Full text link
    We describe and develop three recent novelties in network research which are particularly useful for studying social systems. The first one concerns the discovery of some basic dynamical laws that enable the emergence of the fundamental features observed in social networks, namely the nontrivial clustering properties, the existence of positive degree correlations and the subdivision into communities. To reproduce all these features we describe a simple model of mobile colliding agents, whose collisions define the connections between the agents which are the nodes in the underlying network, and develop some analytical considerations. The second point addresses the particular feature of clustering and its relationship with global network measures, namely with the distribution of the size of cycles in the network. Since in social bipartite networks it is not possible to measure the clustering from standard procedures, we propose an alternative clustering coefficient that can be used to extract an improved normalized cycle distribution in any network. Finally, the third point addresses dynamical processes occurring on networks, namely when studying the propagation of information in them. In particular, we focus on the particular features of gossip propagation which impose some restrictions in the propagation rules. To this end we introduce a quantity, the spread factor, which measures the average maximal fraction of nearest neighbors which get in contact with the gossip, and find the striking result that there is an optimal non-trivial number of friends for which the spread factor is minimized, decreasing the danger of being gossiped.Comment: 16 Pages, 9 figure

    Iron and s-elements abundance variations in NGC5286: comparison with anomalous globular clusters and Milky Way satellites

    Get PDF
    We present a high resolution spectroscopic analysis of 62 red giants in the Milky Way globular cluster NGC5286. We have determined abundances of representative light proton-capture, alpha, Fe-peak and neutron-capture element groups, and combined them with photometry of multiple sequences observed along the colour-magnitude diagram. Our principal results are: (i) a broad, bimodal distribution in s-process element abundance ratios, with two main groups, the s-poor and s-rich groups; (ii) substantial star-to-star Fe variations, with the s-rich stars having higher Fe, e.g. _s-rich - _s-poor ~ 0.2~dex; and (iii) the presence of O-Na-Al (anti-)correlations in both stellar groups. We have defined a new photometric index, c_{BVI}=(B-V)-(V-I), to maximise the separation in the colour-magnitude diagram between the two stellar groups with different Fe and s-element content, and this index is not significantly affected by variations in light elements (such as the O-Na anticorrelation). The variations in the overall metallicity present in NGC5286 add this object to the class of "anomalous" GCs. Furthermore, the chemical abundance pattern of NGC5286 resembles that observed in some of the anomalous GCs, e.g. M22, NGC1851, M2, and the more extreme Omega Centauri, that also show internal variations in s-elements, and in light elements within stars with different Fe and s-elements content. In view of the common variations in s-elements, we propose the term s-Fe-anomalous GCs to describe this sub-class of objects. The similarities in chemical abundance ratios between these objects strongly suggest similar formation and evolution histories, possibly associated with an origin in tidally disrupted dwarf satellites.Comment: 28 pages, 21 figures, accepted for publication in MNRA

    Stochastic Loewner evolution driven by Levy processes

    Full text link
    Standard stochastic Loewner evolution (SLE) is driven by a continuous Brownian motion, which then produces a continuous fractal trace. If jumps are added to the driving function, the trace branches. We consider a generalized SLE driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual SLE parameter, κ\kappa, as well as α\alpha which defines the shape of the stable Levy distribution. The resulting behavior is characterized by two descriptors: pp, the probability that the trace self-intersects, and p~\tilde{p}, the probability that it will approach arbitrarily close to doing so. Using Dynkin's formula, these descriptors are shown to change qualitatively and singularly at critical values of κ\kappa and α\alpha. It is reasonable to call such changes ``phase transitions''. These transitions occur as κ\kappa passes through four (a well-known result) and as α\alpha passes through one (a new result). Numerical simulations are then used to explore the associated touching and near-touching events.Comment: Published version, minor typos corrected, added reference

    Main-Sequence and sub-giant stars in the Globular Cluster NGC6397: The complex evolution of the lithium abundance

    Full text link
    Thanks to the high multiplex and efficiency of Giraffe at the VLT we have been able for the first time to observe the Li I doublet in the Main Sequence (MS) stars of a Globular Cluster. At the same time we observed Li in a sample of Sub-Giant (SG) stars of the same B-V colour. Our final sample is composed of 84 SG stars and 79 MS stars. In spite of the fact that SG and MS span the same temperature range we find that the equivalent widths of the Li I doublet in SG stars are systematically larger than those in MS stars, suggesting a higher Li content among SG stars. This is confirmed by our quantitative analysis. We derived the effective temperatures, from Hα\alpha fitting, and NLTE Li abundances of the stars in our the sample, using 3D and 1D models. We find that SG stars have a mean Li abundance higher by 0.1dex than MS stars, using both 1D and 3D models. We also detect a positive slope of Li abundance with effective temperature. These results provide an unambiguous evidence that the Li abundance changes with evolutionary status. The physical mechanisms responsible for this behaviour are not yet clear, and none of the existing models seems to describe accurately these observations. Based on these conclusions, we believe that the cosmological lithium problem still remains an open question.Comment: Proceedings of the contributed talk presented at the IAU Symposium 26

    Many Roads to Synchrony: Natural Time Scales and Their Algorithms

    Full text link
    We consider two important time scales---the Markov and cryptic orders---that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the epsilon-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the epsilon-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.Comment: 17 pages, 16 figures: http://cse.ucdavis.edu/~cmg/compmech/pubs/kro.htm. Santa Fe Institute Working Paper 10-11-02

    Stellar science from a blue wavelength range - A possible design for the blue arm of 4MOST

    Get PDF
    From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small-scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal-poor stars, and allow for studies of heavy elements (Z>38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal-poor stars. This means that some elements cannot be studied in the visual-redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi-object spectrograph commissioned for the ESO VISTA 4m-telescope. We focus here on high-density, wide-area survey of stars and the science that can be achieved with high-resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high-resolution spectrograph, we find that a sampling of >2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393-436 nm, is the most well-balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (+/-0.1 dex) in the blue and allow us to confront the outlined scientific questions. (abridged)Comment: 14 pages, 8 figures, accepted for publication in A
    corecore