45 research outputs found

    Common coding variant in SERPINA1 increases the risk for large artery stroke

    Get PDF
    Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3?-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis

    Genetic overlap between diagnostic subtypes of ischemic stroke

    Get PDF
    Background and Purpose: Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Methods: Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. Results: High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10-4) and profile scores (rg=0.72; 95% confid

    Plasmin Generation Potential and Recanalization in Acute Ischaemic Stroke; an Observational Cohort Study of Stroke Biobank Samples

    Get PDF
    Rationale More than half of patients who receive thrombolysis for acute ischaemic stroke fail to recanalize. Elucidating biological factors which predict recanalization could identify therapeutic targets for increasing thrombolysis success. Hypothesis We hypothesize that individual patient plasmin potential, as measured by in vitro response to recombinant tissue-type plasminogen activator (rt-PA), is a biomarker of rt-PA response, and that patients with greater plasmin response are more likely to recanalize early. Methods This study will use historical samples from the Barcelona Stroke Thrombolysis Biobank, comprised of 350 pre-thrombolysis plasma samples from ischaemic stroke patients who received serial transcranial-Doppler (TCD) measurements before and after thrombolysis. The plasmin potential of each patient will be measured using the level of plasmin-antiplasmin complex (PAP) generated after in-vitro addition of rt-PA. Levels of antiplasmin, plasminogen, t-PA activity, and PAI-1 activity will also be determined. Association between plasmin potential variables and time to recanalization [assessed on serial TCD using the thrombolysis in brain ischemia (TIBI) score] will be assessed using Cox proportional hazards models, adjusted for potential confounders. Outcomes The primary outcome will be time to recanalization detected by TCD(defined as TIBI ≥4). Secondary outcomes will be recanalization within 6-h and recanalization and/or haemorrhagic transformation at 24-h. This analysis will utilize an expanded cohort including ∼120 patients from the Targeting Optimal Thrombolysis Outcomes (TOTO) study. Discussion If association between proteolytic response to rt-PA and recanalization is confirmed, future clinical treatment may customize thrombolytic therapy to maximize outcomes and minimize adverse effects for individual patients

    PARP Inhibitors and Haematological Malignancies—Friend or Foe?

    No full text
    Since their introduction several years ago, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have become the standard of care for breast and gynaecological cancers with BRCA gene mutations. Given that PARPi act by exploiting defective DNA repair mechanisms within tumour cells, they should be ideally suited to combatting haematological malignancies where these pathways are notoriously defective, even though BRCA mutations are rare. To date, despite promising results in vitro, few clinical trials in humans for haematological malignancies have been performed, and additional investigation is required. Paradoxically, secondary haematological malignancies have arisen in patients after treatment with PARPi, raising concerns about their potential use as therapies for any blood or bone marrow-related disorders. Here, we provide a comprehensive review of the biological, pre-clinical, and clinical evidence for and against treating individual haematological malignancies with approved and experimental PARPi. We conclude that the promise of effective treatment still exists, but remains limited by the lack of investigation into useful biomarkers unique to these malignancies

    Unlikely role of glycolytic enzyme α-enolase in cancer metastasis and its potential as a prognostic biomarker

    No full text
    Reliance on glycolysis for energy production is considered a hallmark of cancer and the glycolytic enzyme α-enolase is overexpressed in a range of cancer types. However, recent studies have revealed that α-enolase is involved in a variety of unrelated physiological processes and can be found in multiple unexpected cellular locations. This review focuses on the unlikely role of α-enolase as an extracellular plasminogen-binding receptor localised to the plasma membrane. Conversion of plasminogen to plasmin on the surface of cancer cells enhances their ability to invade through stroma by activating collagenases and degrading fibrin as well as extracellular matrix proteins. Increased expression of α-enolase is associated with increased migration and invasion of cancer cells, and decreased metastasis-free survival in patients with several cancer types, including non-small cell lung, pancreatic, breast and colorectal cancers. Due to its overexpression in a range of cancer types and multi-functional roles in key areas of tumour metabolism and metastasis, α-enolase may be useful as a universal cancer prognostic biomarker or therapeutic target

    Microparticles in health and disease

    No full text
    Microparticles (MPs) are small fragments of membrane-bound cytoplasm that are shed from the surface of an activated or apoptotic cell. Recently, their function as vectors of transcellular exchange of biologic information, in addition to better described forms of intercellular communication such as growth factors, cytokines, and chemokines, has become well recognized. Circulating levels of MPs are thought to reflect a balance between cell stimulation, proliferation, and death. The production of MPs is thought to predominately occur by vesiculation or blebbing of the cell membrane. The mechanisms governing the remodeling of the plasma membrane are complex, involving cytoskeletal changes and a shift from normal phospholipid asymmetry. Increased intracellular calcium subsequent to cell activation leads to intracellular increases in several proteins including gelsolin and calpain, as well as the activity of enzymes such as translocase, floppase, and scramblase, which play important roles in the homeostasis of the cell membrane. The membrane vesiculation and phospholipids asymmetry leading to the production of MPs occurs by the complex interplay of the proteins involved. There are several clinical conditions associated with elevated MPs, and most are also associated with an increased risk of thrombosis. Apart from cardiovascular disease and venous thromboembolism, MPs are also elevated in solid tumors with metastatic disease. The measurement of MPs is being regarded as a potential biomarker, given the range of conditions in which they are elevated and the association with prothrombotic states. The utility of measuring MPs as a diagnostic and prognostic marker is currently a subject of intense investigation. The further development of the various methods for the detection and measurement of MPs and prospective clinical trials establishing the utility of such tests will be critical prior to the routine measurement of MPs in the diagnostic laboratory

    The Role of DNA Repair Pathways in AML Chemosensitivity

    No full text

    Variable plasma levels of Factor V Leiden correlate with circulating platelet microparticles in carriers of Factor V Leiden

    No full text
    Introduction: Inheritance of Factor V Leiden (FVL) is associated with an increased but variable level of risk for thrombosis. We have previously shown that FVL heterozygotes have elevated levels of circulating pro-coagulant microparticles (MP). Here we sought to determine if these subjects differed in their plasma levels of FVL and if this was related to MP concentrations and/or history of thrombosis. Materials and Methods: The Hemoclot Quanti. V-L clotting assay was used to specifically measure FVL in plasma samples from 44 known carriers (12 M, 32 F; aged 46 ± 13 years). Circulating MP were quantified by flow cytometry using fluorochrome conjugated antibodies to platelet (CD41a), leukocyte (CD45), and endothelial (CD62e) surface markers, and MP prothrombinase activity was determined by ELISA. Results: The cohort was found to have a mean FVL of 49.5 ± 5.6% and this was positively correlated to the total number of circulating CD41a + MP (R = 0.31, p = 0.03) but not to other MP subsets or to MP prothrombinase activity. The amount of FVL relative to normal factor V (FVL/FV clotting ratio) was calculated and found to be highly variable, ranging from 0.37 to 0.69, and significantly correlated with a history of thrombosis (n = 14; p = 0.04). Conclusions: This is the first study to investigate the relationship between varying levels of FVL and plasma derived MP. These results are consistent with our previous findings of an increase in MP levels in carriers of FVL as compared to controls, and suggest a role for FVL/FV ratio in predicting risk of thrombosis in carriers of FVL

    Immunity and stroke, the hurdles of stroke research translation

    No full text
    Immunomodulatory therapies after stroke have the potential to provide clinical benefit to a subset of patients, but risk subverting the protective, healing aspects of the innate immune response. Neutrophils clear necrotic cerebral tissue and are important in immunomodulation, but can also contribute to tissue injury. Human trials for immunomodulatory stroke treatments in the sub-acute time frame have attempted to prevent peripheral neutrophil infiltration, but none have been successful and one trial demonstrated harm. These unselected trials had broad inclusion criteria and appear to not have had a specific treatment target. Unfortunately, due to the heterogeneous nature of brain ischemia in humans resulting in variation in clinical severity, the negative effect of thrombolytic drugs on the blood–brain barrier, and the heterogeneity of immune response, it may only be a subset of stroke patients who can realistically benefit from immunomodulation therapies. Translational research strategies require both an understanding of lab practices which create highly controlled environments in contrast to clinical practice where the diagnosis of stroke does not require the identification of a vessel occlusion. These differences between lab and clinical practices can be resolved through the integration of appropriate patient selection criteria and use of advanced imaging and ridged patient selection practices in clinical trials which will be an important part to the success of any future trials of translational research such as immunomodulation
    corecore