55,591 research outputs found

    Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods

    Full text link
    This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension Q1rotQ_1^{\rm rot}, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure

    Thermo-viscoelastic analysis of composite materials, volume 1

    Get PDF
    Advanced composite materials, especially graphite/epoxy, are being applied to aircraft structures in order to improve performance and save weight. An important consideration in composite design is the residual strength of a structure containing holes, delaminations, or interlaminar damage when subjected to compressive loads. Recent studies have revealed the importance of viscoelastic effects in polymer-based composites. The viscoelastic effect is particularly significant at elevated temperature/moisture conditions since the matrix material is strongly affected by the environment. The solution of viscoelastic problems in composites was limited to special cases which can be solved by classical lamination theory. A finite element procedure is presented for calculating time-dependent stresses and strains in composite structures with general configurations and complicated boundary conditions. Using this procedure the in-plane and interlaminar stress distributions and histories in notched and unnotched composites were obtained for mechanical and thermal loads. Both two-dimensional and three-dimensional viscoelastic problems are analyzed. The effects of layup orientation and load spectrum on creep response and stress relaxation were also studied

    Graphene microwave transistors on sapphire substrates

    Full text link
    We have developed metal-oxide graphene field-effect transistors (MOGFETs) on sapphire substrates working at microwave frequencies. For monolayers, we obtain a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power gain maximum frequency of about ~ 3 GHz for this specific sample. Given the strongly reduced charge noise for nanostructures on sapphire, the high stability and high performance of this material at low temperature, our MOGFETs on sapphire are well suited for a cryogenic broadband low-noise amplifier

    Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy

    Full text link
    Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3 (100)substrates by the pulsed laser deposition technique, and were studied by measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band region as a function of film thickness, both at room temperature and low temperature. Our results demonstrated an abrupt variation in the spectral structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers) Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to the intrinsic size effects.Comment: 13 pages, 4 figure

    The Environment of ``E+A'' Galaxies

    Get PDF
    The violent star formation history of ``E+A'' galaxies and their detection almost exclusively in distant clusters is frequently used to link them to the ``Butcher-Oemler effect'' and to argue that cluster environment influences galaxy evolution. From 11113 spectra in the Las Campanas Redshift Survey, we have obtained a unique sample of 21 nearby ``E+A" galaxies. Surprisingly, a large fraction (about 75%) of these ``E+A''s lie in the field. Therefore, interactions with the cluster environment, in the form of the ICM or cluster potential, are not essential for ``E+A'' formation. If one mechanism is responsible for ``E+A''s, their existence in the field and the tidal features in at least 5 of the 21 argue that galaxy-galaxy interactions and mergers are that mechanism. The most likely environments for such interactions are poor groups, which have lower velocity dispersions than clusters and higher galaxy densities than the field. In hierarchical models, groups fall into clusters in greater numbers at intermediate redshifts than they do today. Thus, the Butcher-Oemler effect may reflect the typical evolution of galaxies in groups and in the field rather than the influence of clusters on star formation in galaxies. This abstract is abridged.Comment: 39 uuencoded, compressed pages (except Fig 1), complete preprint at ftp://ociw.edu/pub/aiz/eplusa.ps, ApJ, submitte

    Large collective Lamb shift of two distant superconducting artificial atoms

    Get PDF
    Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it can be obscured by radiative decay and direct atom-atom interactions. Here, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure

    Scattering of relativistic particles with Aharonov-Bohm-Coulomb interaction in two dimensions

    Get PDF
    The Aharonov-Bohm-Coulomb potentials in two dimensions may describe the interaction between two particles carrying electric charge and magnetic flux, say, Chern--Simons solitons, or so called anyons. The scattering problem for such two-body systems is extended to the relativistic case, and the scattering amplitude is obtained as a partial wave series. The electric charge and magnetic flux is (q-q, ϕ/Z-\phi/Z) for one particle and (ZqZq, ϕ\phi) for the other. When (Zq2/c)21(Zq^2/\hbar c)^2\ll 1, and qϕ/2πcq\phi/2\pi\hbar c takes on integer or half integer values, the partial wave series is summed up approximately to give a closed form. The results exhibit some nonperturbative features and cannot be obtained from perturbative quantum electrodynamics at the tree level.Comment: revtex, 11 pages, no figur
    corecore