8,487 research outputs found
Investigation of the AODV and the SDWCA QoS handling at different utilisation levels in adaptive clustering environments
A simulation study using NS2 simulator using two main routing protocols with specific design parameters has been carried out to investigate the QoS main parameters such as throughput, delay, Jitter, Control Overhead, Number of packets, number of packets dropped and the rating overheads. The traffic is made of CBR slow video traffic. From the result it is noted that the SDWCA routing protocol outperforms the AODV routing protocols in the throughput, the delay and the jitter issues at different loading levels
Ultrasonically assisted machining of Titanium alloys
In this chapter we discuss the nuances of a non-conventional machining technique known as ultrasonically assisted machining, which has been used to demonstrate tractable benefits in the machining of titanium alloys. We also demonstrate how further improvements may be achieved by combining this machining technique with the well known advantages of hot machining in metals and alloys
Generalized Mittag-Leffler Distributions and Processes for Applications in Astrophysics and Time Series Modeling
Geometric generalized Mittag-Leffler distributions having the Laplace
transform is
introduced and its properties are discussed. Autoregressive processes with
Mittag-Leffler and geometric generalized Mittag-Leffler marginal distributions
are developed. Haubold and Mathai (2000) derived a closed form representation
of the fractional kinetic equation and thermonuclear function in terms of
Mittag-Leffler function. Saxena et al (2002, 2004a,b) extended the result and
derived the solutions of a number of fractional kinetic equations in terms of
generalized Mittag-Leffler functions. These results are useful in explaining
various fundamental laws of physics. Here we develop first-order autoregressive
time series models and the properties are explored. The results have
applications in various areas like astrophysics, space sciences, meteorology,
financial modeling and reliability modeling.Comment: 12 pages, LaTe
Lexicalized emotion? Tonal patterns of emotion words in Mandarin Chinese
2013-2014 > Academic research: refereed > Refereed conference paperOther Versio
The effect of cigarette price increase on the cigarette consumption in Taiwan: evidence from the National Health Interview Surveys on cigarette consumption
BACKGROUND: This study uses cigarette price elasticity to evaluate the effect of a new excise tax increase on cigarette consumption and to investigate responses from various types of smokers. METHODS: Our sample consisted of current smokers between 17 and 69 years old interviewed during an annual face-to-face survey conducted by Taiwan National Health Research Institutes between 2000 to 2003. We used Ordinary Least Squares (OLS) procedure to estimate double logarithmic function of cigarette demand and cigarette price elasticity. RESULTS: In 2002, after Taiwan had enacted the new tax scheme, cigarette price elasticity in Taiwan was found to be -0.5274. The new tax scheme brought about an average annual 13.27 packs/person (10.5%) reduction in cigarette consumption. Using the cigarette price elasticity estimate from -0.309 in 2003, we calculated that if the Health and Welfare Tax were increased by another NT$ 3 per pack and cigarette producers shifted this increase to the consumers, cigarette consumption would be reduced by 2.47 packs/person (2.2%). The value of the estimated cigarette price elasticity is smaller than one, meaning that the tax will not only reduce cigarette consumption but it will also generate additional tax revenues. Male smokers who had no income or who smoked light cigarettes were found to be more responsive to changes in cigarette price. CONCLUSIONS: An additional tax added to the cost of cigarettes would bring about a reduction in cigarette consumption and increased tax revenues. It would also help reduce incidents smoking-related illnesses. The additional tax revenues generated by the tax increase could be used to offset the current financial deficiency of Taiwan's National Health Insurance program and provide better public services
Recommended from our members
DNA origami protection and molecular interfacing through engineered sequence-defined peptoids
DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications
Open defecation and childhood stunting in India: an ecological analysis of new data from 112 districts.
Poor sanitation remains a major public health concern linked to several important health outcomes; emerging evidence indicates a link to childhood stunting. In India over half of the population defecates in the open; the prevalence of stunting remains very high. Recently published data on levels of stunting in 112 districts of India provide an opportunity to explore the relationship between levels of open defecation and stunting within this population. We conducted an ecological regression analysis to assess the association between the prevalence of open defecation and stunting after adjustment for potential confounding factors. Data from the 2011 HUNGaMA survey was used for the outcome of interest, stunting; data from the 2011 Indian Census for the same districts was used for the exposure of interest, open defecation. After adjustment for various potential confounding factors--including socio-economic status, maternal education and calorie availability--a 10 percent increase in open defecation was associated with a 0.7 percentage point increase in both stunting and severe stunting. Differences in open defecation can statistically account for 35 to 55 percent of the average difference in stunting between districts identified as low-performing and high-performing in the HUNGaMA data. In addition, using a Monte Carlo simulation, we explored the effect on statistical power of the common practice of dichotomizing continuous height data into binary stunting indicators. Our simulation showed that dichotomization of height sacrifices statistical power, suggesting that our estimate of the association between open defecation and stunting may be a lower bound. Whilst our analysis is ecological and therefore vulnerable to residual confounding, these findings use the most recently collected large-scale data from India to add to a growing body of suggestive evidence for an effect of poor sanitation on human growth. New intervention studies, currently underway, may shed more light on this important issue
Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment
The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution
The complete mitochondrial genome of the foodborne parasitic pathogen Cyclospora cayetanensis
Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes
SMART: Unique splitting-while-merging framework for gene clustering
Copyright @ 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.National Institute for Health Researc
- …