17 research outputs found

    Stereotypical Images of STEM Professionals and STEM Career Interests in Chinese Elementary School Students

    Get PDF
    This study investigated stereotypical images of STEM professions and STEM career interest in Chinese elementary school students. The relationships between stereotypical images of STEM professionals and STEM career interests were also determined. Data for this study was gathered from two elementary schools in China, forming a convenience sample of 318 students enrolled from 3rd to 6th grade. Quantitative data of stereotypes about STEM professionals’ social skills, positive images of STEM professionals, views on STEM implications for society, and STEM career interests were gathered by a questionnaire with Likert scale. Follow-up structured interviews were performed with 12 participants. Elementary school students had strong stereotypes about STEM professionals’ social skills, slightly deep positive image of STEM professionals, and very positive views on STEM implications for society. However, their STEM career interests were not very high. Besides, elementary school students’ stereotypes about STEM professionals’ social skills have minor negative effects on their STEM career interests. Their positive image of STEM professionals and views on STEM implications for society have significant correlation with their STEM career interests

    Update on HE vs UHE Collimation for Focal Total-activity Quantification in I-131 SPECT Using 3D OSEM

    Full text link
    We calibrated a scintillation camera for the counts-to-activity conversion factor, CF, by measuring a phantom consisting of a sphere containing a known 131-I activity placed within an elliptical cylinder. Within a 3D OSEM reconstruction algorithm, we employed a depth-dependent detector-response model based on smooth fits to the point-source-response function. Using the ultra-high-energy (UHE) collimator and 100 iterations, the recovery coefficient, RC, appeared to be 1 for any sphere volume down to 20 cm3. The CF changed only a small amount as the background-over-target activity concentration ratio, b, increased for both UHE and high-energy (HE) collimation. Tests of activity quantification were carried out with an anthropomorphic phantom simulating a 100 cm3 spherical tumor centrally located inferior to the lungs. With 3D OSEM reconstruction, using the global-average CF and no RC-based correction, mean bias in the simulated-tumor activity estimate over 20 realizations was -7.4% with UHE collimation, and -9.4% with HE collimation. For comparison, with 1D SAGE reconstruction, using the CF corresponding to the experimental estimate of b and RC-based correction, the mean bias was worse, -10.7% for UHE collimation, but better, -4.3 %, for HE collimation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85907/1/Fessler190.pd

    Determining Total I-131 Activity Within a VoI Using SPECT, a UHE Collimator, OSEM, and a Constant Conversion Factor

    Full text link
    Accurate determination of activity within a volume of interest is needed during radiopharmaceutical therapies. Single-photon emission computed tomography(SPECT) is employed but requires a method to convert counts to activity. We use a phantom-based conversion; that is, we image an elliptical cylinder containing a sphere that has a known amount of 131-I activity inside. The regularized space alternating generalized expectation (SAGE) algorithm employing a strip-integral detector-response model was employed for reconstruction in previous patient evaluations. With that algorithm and a high-energy collimator, the estimates for sphere activity varied with changes in: 1) the level of uniform background activity in the cylinder; 2) the image resolution due to different values of the radius of rotation R; and 3) the volume of the sphere. When one used those to convert reconstructed counts within a patient tumor into an activity estimate, the resultant value may have been in error because of patient-phantom mismatch. As a potential remedy, in this paper, we use an ordered subsets expectation maximization (OSEM) algorithm with a 3-D depth-dependent detector-response model and an ultra-high-energy collimator. Results after 100 OSEM iterations and using a maximum counts registration show the estimates for sphere activity: 1) have a dependence on the level of background activity with a slope whose absolute magnitude is typically only 0.37 times that with SAGE; 2) are independent of R; and 3) are independent of sphere volume down to and including a sphere volume of 20 cm3. We conclude that using a global-average conversion factor to relate counts to activity and no volume-based correction might be reasonable with OSEM. For a test of that conclusion, target activity is estimated for an anthropomorphic phantom containing a 100 cm3 spherical tumor centrally located inferior to the lungs. With OSEM-based quantification, using: 1) a global-average conversion factor and 2) no volume-based correction, mean bias in the simulated-tumor activity estimate over 20 realizations is -7.37% (relative standard deviation =5.93%). With SAGE-based quantification using: 1) the conversion factor corresponding to the experimental estimate of ba- ckground and 2) volume-based correction, the mean bias is -10.7% (relative standard deviation =2.37%). The mean bias is smaller in a statistically significant way and relative standard deviation is not more than a factor of 2.5 bigger with OSEM compared to SAGE. In addition, with OSEM, a patient image apparently shows more highly resolved features, and the activity estimates for two tumors are increased by an average of 10%, relative to results with SAGE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85985/1/Fessler57.pd

    Effect of Including Detector Response in SPECT Quantification of Focal I-131 Therapy

    Full text link
    With a regularized strip-integral (1D) SAGE reconstruction, circular-orbit SPECT estimates of phantom focal 131-I activity vary with changes in the level of uniform background. They also vary with changes in image resolution due to different settings of the radius of rotation. To solve these problems, we investigated the effect of employing two different depth-dependent detector-response models. A regularized plane-by-plane (2D) SAGE algorithm reduced dependence of the counts-to-activity conversion factor on relative background concentration by 37% compared to the 1D SAGE. With unregularized multi-plane (3D) OSEM reconstruction, initial results showed: 1) a conversion factor that was independent of relative background concentration, and 2) a recovery coefficient that was approximately 1 for any sphere volume down to 20cc. We conclude that using a 3D detector-response model has the potential to eliminate bias problems. For a patient, the preliminary activity-estimate changes using 3D OSEM compared to 1D SAGE were: 1) +16% for a large tumor, and 2) -35% for a small tumor for which recovery-coefficient-based-correction-factor errors can be large.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85991/1/Fessler170.pd

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Energy-Drink and Adverse Kidney Function: A Review of Public Health Concern and Ethical Issue

    Get PDF
    Abstract Best evidence to acclaim the reviewed effects, needs sufficient trials to support the linkage of incidents of adverse kidney function with the ingestion of the drink. This study aimed to conduct a review of current studies determining adverse kidney function caused by ingestion of energy-drink. Electronic academic database of Cochrane, PubMed, CINAHL, and MEDLINE were searched for relevant studies. A systematic review of English articles published from December 1988 to December 2020 was conducted. All study design was included. A Prisma-flow diagram was applied. Nutritional ingredients, clinical parameters from urine and blood reported kidney function were summarized. The outcomes were condensed into four main interests: ingredients of energy-drinks, intensity and duration of ingestion, and ethical issue. Adverse kidney function was found among adults with excessive ingestion of energy-drink

    Recent Advances in Environmentally Friendly and Green Degumming Processes of Silk for Textile and Non-Textile Applications

    No full text
    Silk has been widely used not only in the textile field but also in non-textile applications, which is composed of inner fibrous protein, named fibroin, and outer global protein, named sericin. Due to big differences, such as appearance, solubility, amino acid composition and amount of reactive groups, silk fibroin and sericin usually need to be separated before further process. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications. Traditional textile degumming processes, including soap, alkali or both, could bring such problems as environmental damage, heavy use of water and energy, and damage to silk fibroin. Therefore, this review aims to present a systematic work on environmentally friendly and green degumming processes of raw silk, including art of green degumming process, quantitative and qualitative evaluation, influence of degumming on molecular weight, structure, morphology and properties of silk. It is anticipated that rational selection and design of environmentally friendly and green degumming process is quite important and meaningful, not only for textile application but also for non-textile application
    corecore