92 research outputs found

    19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    Get PDF
    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%

    Soft Language Clustering for Multilingual Model Pre-training

    Full text link
    Multilingual pre-trained language models have demonstrated impressive (zero-shot) cross-lingual transfer abilities, however, their performance is hindered when the target language has distant typology from source languages or when pre-training data is limited in size. In this paper, we propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally. Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods. On the tasks of XTREME including text classification, sequence labeling, question answering, and sentence retrieval, both base- and large-size language models pre-trained with our proposed method exhibit consistent performance improvement. Furthermore, it provides substantial advantages for low-resource languages in unsupervised sentence retrieval and for target languages that differ greatly from the source language in cross-lingual transfer

    Peptidome workflow of serum and urine samples for biomarker discovery

    Get PDF
    Peptidomics plays an important role in clinical proteomics and disease-associated biomarker discovery. It has exhibited mounting potential in early noninvasive diagnosis, prognosis, and treatment evaluation of diseases. This article presents an introduction of peptidomics, the entire peptidomic workflows for serum and urine samples, and a brief overview of recent works in this area. The review is designed to enable researchers to find the most suited strategy for their peptidome studies.Natural Science Foundation of China; Fujian Province Department of Science Technolog

    Changes in sleep quality of children with epilepsy and anxiety of their caregivers after COVID-19 infection: a case-series report

    Get PDF
    ObjectiveTo study the changes in epileptic seizures and sleep quality in children with epilepsy (CWE) and the changes in anxiety of their caregivers after infection with COVID-19.MethodsOutpatients and inpatients of CWEs were selected as subjects and a questionnaire survey was used to carry out this case-series study. The demographic information of the CWEs and their caregivers, information about epilepsy, and information about the vaccination, infection, and treatment of COVID-19 were collected. The changes in sleep quality of CWEs and the changes in anxiety of their caregivers were assessed by the Child Sleep Habits Questionnaire (CSHQ) and Caregiver Anxiety Scale (CAS). Risk factors affecting sleep habits in CWEs and caregiver anxiety were further analyzed by one-way analysis of variance.ResultsA total of 312 children were included in the study. Among them, 134 patients (42.9%) were female. The average age of the children was 9.30 ± 3.88 years, and the duration of epilepsy was 4.59 ± 3.36 years. A total of 221 of the 312 children were infected with COVID-19, and all the infected children developed fever, which lasted for 1.71 ± 1.13 days. 10 children were satisfied with controlled seizures for more than 1 year and relapsed after COVID-19 infection (4.2%), 4 cases (3.6%) with increased seizures, and 8 children with reduced seizures (7.7%), 17 children (7.7%) had no change in seizures, and 182 children (82.3%) remained seizure-free after the COVID-19 infection. The average sleep time of the CWEs was 9.25 ± 1.04 h and the average total score of the CSHQ was 37.25 ± 5.19, among which 44 cases (14.1%) had more than 41 points. As the result of the CAS, 16 of them (5.13%) scored above 50 and the average total score was 31.49 ± 8.09. The control of seizures, age of onset, types of anti-seizure medicines (ASMs), and seizure duration were risk factors affecting sleep quality. Accordingly, the score of CAS was significantly lower when there was more than one caregiver who cared for the CWE.ConclusionsCOVID-19 infection did not cause an increase in seizures in CWEs, nor did it worsen their sleep quality of them or aggravate the anxiety of their caregivers

    The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls

    Get PDF
    Complex disease is characterized by the interplay of multiple genetic and environmental factors. Rheumatoid arthritis (RA) is a complex autoimmune disease with a pronounced genetic component, mainly due to HLA-DRB1 gene, but also a multitude of loci outside the HLA region. In this work we strive to contribute to the understanding of the functional involvement of these susceptibility loci in the pathogenesis of RA. This study is based on a large material of whole blood samples and peripheral blood mononuclear cells (PBMCs) from RA patients and matched healthy controls from Sweden. The main methods used in this work included probe-based genotyping and gene-expression assays, cell cultures, RNA-sequencing, gene-gene interaction and pathway analysis, as well as a plethora of common molecular genetics and bioinformatics methods. We investigated the role of expression of known genetic risk factors PTPN22 and PTPN2 in RA, with a special attention to the splicing profile of these genes. Our data indicates significant differences in the expression ratio of splice variants for PTPN22 in whole blood samples from RA patients and healthy controls. For PTPN2 we demonstrate a significant difference in the relative mRNA expression of' transcript TC48 in PBMCs of healthy controls and RA patients. Additionally, we identified new susceptibility SNPs in the PTPN2 locus: rs657555 and rs11080606, by addressing the interaction of PTPN2 variants with HLA-DRB1 shared-epitope (SE) alleles in autoantibody positive RA patients in two independent cohorts. In this work, we also address the functional genetic role of the members of the MAP signaling pathway upstream of p38 and JNK – crucial enzymes in RA – with a regard to splicing profile and their connection to HLA-DRB1. We found a significant statistical interaction for rs10468473 from MAP2K4 locus with SE alleles in autoantibody-positive RA. Importantly, individuals heterozygous for rs10468473 demonstrated higher expression of total MAP2K4 mRNA in blood, compared to A-allele homozygous. We also describe a novel, putatively translated RNA splice form of MAP2K4, that is differentially expressed in peripheral blood mononuclear cells from 88 RA cases and controls, and is modulated in response to TNF in Jurkat cell line. Finally, we performed an expression analysis of multiple validated RA risk loci, and pathway analysis to assess functional relationship between RA susceptibility genes and predict new potential study candidates. New candidate molecules suggested by the pathway analysis, genes ERBB2 and HSPB1, as well as HLA-DRB1, were differentially expressed between RA patients and healthy individuals in RNA-seq data. ERBB2 expression profile was similar in whole blood of both treated and untreated patients compared to healthy individuals. A similar expression profile was replicated for ERBB2 in PBMCs in an independent material. In this work, we approached the task of elucidating the functional aspects of genetic susceptibility of RA, by integrating genetic epidemiology, transcriptomics, proteomics, cellmodels, and bioinformatics. We maintain, that such integrative approach provides the rationale to prioritize genes and genetic events for further functional studies. Our findings also outline the need to consider potential clinical significance of alternative splicing in gene expression studies

    Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    Get PDF
    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment

    In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe_(2)O_3) electrodes

    Get PDF
    The spectra and dynamics of photogenerated electrons and holes in excited hematite (α-Fe_(2)O_3) electrodes are investigated by transient absorption (from visible to infrared and from femto- to micro-seconds), bias-dependent differential absorption and Stark spectroscopy. Comparison of results from these techniques enables the assignment of the spectral signatures of photogenerated electrons and holes. Under the pulse illumination conditions of transient absorption (TA) measurement, the absorbed photon to electron conversion efficiency (APCE) of the films at 1.43 V (vs. reversible hydrogen electrode, RHE) is 0.69%, significantly lower than that at AM 1.5. TA kinetics shows that under these conditions, >98% of the photogenerated electrons and holes have recombined by 6 μs. Although APCE increases with more positive bias (from 0.90 to 1.43 V vs. RHE), the kinetics of holes up to 6 μs show negligible change, suggesting that the catalytic activity of the films is determined by holes with longer lifetimes

    Spermidine endows macrophages anti-inflammatory properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1α upregulation and autophagy.

    Get PDF
    Distinct metabolic programs, either energy-consuming anabolism or energy-generating catabolism, were required for different biological functions. Macrophages can adopt different immune phenotypes in response to various cues and exhibit anti- or pro-inflammatory properties relying on catabolic pathways associated with oxidative phosphorylation (OXPHOS) or glycolysis. Spermidine, a natural polyamine, has been reported to regulate inflammation through inducing anti-inflammatory (M2) macrophages. However, the underlying mechanisms remain elusive. We show here that the M2-polarization induced by spermidine is mediated by mitochondrial reactive oxygen species (mtROS). The levels of mitochondrial superoxide and H2O2 were markedly elevated by spermidine. Mechanistically, mtROS were found to activate AMP-activated protein kinase (AMPK), which in turn enhanced mitochondrial function. Furthermore, hypoxia-inducible factor-1α (Hif-1α) was upregulated by the AMPK activation and mtROS and was required for the expression of anti-inflammatory genes and induction of autophagy. Consistent with previous report that autophagy is required for the M2 polarization, we found that the M2 polarization induced by spermidine was also mediated by increased autophagy. The macrophages treated with spermidine in vitro were found to ameliorate Dextran Sulfate Sodium (DSS)-induced inflammatory bowel disease (IBD) in mice. Thus, spermidine can elicit an anti-inflammatory program driven by mtROS-dependent AMPK activation, Hif-1α stabilization and autophagy induction in macrophages. Our studies revealed a critical role of mtROS in shaping macrophages into M2-like phenotype and provided novel information for management of inflammatory disease by spermidine
    corecore