15 research outputs found

    The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. METHODOLOGY/PRINCIPAL FINDINGS: We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5' and/or 3' ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. CONCLUSIONS/SIGNIFICANCE: Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Bromodomain and extraterminal proteins foster the core transcriptional regulatory programs and confer vulnerability in liposarcoma

    Get PDF
    Liposarcoma (LPS) is a rare cancer that can acquire resistance to chemotherapy. Here, the authors map super-enhancers in LPS, finding BET-protein dependent mechanisms that can be targeted by a BET protein degrader, which also can overcome acquired resistance to chemotherapy in LPS

    Topography of transcriptionally active chromatin in glioblastoma

    No full text
    Molecular profiling of the most aggressive brain tumor glioblastoma (GBM) on the basis of gene expression, DNA methylation, and genomic variations advances both cancer research and clinical diagnosis. The enhancer architectures and regulatory circuitries governing tumor-intrinsic transcriptional diversity and subtype identity are still elusive. Here, by mapping H3K27ac deposition, we analyze the active regulatory landscapes across 95 GBM biopsies, 12 normal brain tissues, and 38 cell line counterparts. Analyses of differentially regulated enhancers and super-enhancers uncovered previously unrecognized layers of intertumor heterogeneity. Integrative analysis of variant enhancer loci and transcriptome identified topographies of transcriptional enhancers and core regulatory circuitries in four molecular subtypes of primary tumors: AC1-mesenchymal, AC1-classical, AC2-proneural, and AC3-proneural. Moreover, this study reveals core oncogenic dependency on super-enhancer–driven transcriptional factors, long noncoding RNAs, and druggable targets in GBM. Through profiling of transcriptional enhancers, we provide clinically relevant insights into molecular classification, pathogenesis, and therapeutic intervention of GBM.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Ministry of Health (MOH)National Medical Research Council (NMRC)National Research Foundation (NRF)Published versionThe discovery of ETC-168 (also known as AUM168 in AUM Biosciences) was financially supported by the Biomedical Sciences Institutes and Joint Council Office (JCO Project 11 03 FG 07 05), Agency for Science, Technology and Research, Singapore. This work is funded by the NIH (R01-CA200992-04 to H.P.K., and R35CA197628 and R01CA213138 to M.M.), the Howard Hughes Medical Institute (HHMI-55108547 to M.M.), the Singapore Ministry of Health’s National Medical Research Council (NMRC) under its Singapore Translational Research Investigator Award (NMRC/STaR/0021/2014 to H.P.K.), the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2017-T2-1-033 to H.P.K.), the NMRC Centre Grant Programme awarded to the National University Cancer Institute of Singapore (NMRC/CG/012/2013 and CGAug16M005), the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiatives, the RNA Biology Center at the Cancer Science Institute of Singapore (MOE2014-T3-1-006), the NMRC Open Fund Young Individual Research Grants (MOH-OFYIRG18May-0001 to L.X. and MOH-OFYIRG19Nov-0016 to Y.C.), and the NMRC Translational and Clinical Research Flagship Programme grant (NMRC/TCR/016-NNI/2016 to B.T.A. and C.T.). In addition, this work is supported by the NUS Center for Cancer Research, Cancer Programme under Translational Research Programmes, Yong Loo Lin School of Medicine, NUS (NUHSRO/2020/122/MSC/07/Cancer), a Seed Funding Program within the NCIS Centre Grant, an NCIS Yong Siew Yoon Research grant through donations from the Yong Loo Lin Trust, and philanthropic donations from the Melamed family, and Valerie Baker Fairbank who also gave us encouragement. J.C. is supported by the Start-up Grant of HZNU (4125C5021820470), National Natural Science Foundation of China (81802338 and 82072646), and Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (LR21H160001). Y.H. is supported by Jiangsu Province Commission of Health and Family Planning Research funding (H2017064) and Suzhou Science and Technology Development Plan (SS201864). M.M. is a Howard Hughes Medical Institute (HHMI) Faculty Scholar
    corecore