1,507 research outputs found

    Are women nursing academics represented in university leadership positions?

    Get PDF
    The nursing workforce constitutes the largest professional health workforce in Australia. Nursing is traditionally a female dominated profession. This study reviewed Australian universities that provide entry to practice nursing education. The study identified the distribution of females and males in leadership in nursing education, the positioning of the discipline in the university, and where nurses occupy leadership roles above the nursing discipline (faculty/college). Of the 37 universities that offered entry to practice nursing, more females were evident. However, more men were evident in academia than the proportion of men in nursing outside of the academic setting. Leadership nomenclature varied within each nursing discipline group reviewed. This study demonstrated that the number of nursing academics has decreased since the late 1990’s. The nursing workforce is still a significant contributor to the academic workforce and yet numbers of nurse academics working in roles senior to their discipline were few. This paper discusses how the nursing workforce as predominantly female, has implications to both females and males, and may impact opportunities for leadership and promotion to senior roles

    Functional diversification of Argonautes in nematodes:an expanding universe

    Get PDF
    In the last decade, many diverse RNAi (RNA interference) pathways have been discovered that mediate gene silencing at epigenetic, transcriptional and post-transcriptional levels. The diversity of RNAi pathways is inherently linked to the evolution of Ago (Argonaute) proteins, the central protein component of RISCs (RNA-induced silencing complexes). An increasing number of diverse Agos have been identified in different species. The functions of most of these proteins are not yet known, but they are generally assumed to play roles in development, genome stability and/or protection against viruses. Recent research in the nematode Caenorhabditis elegans has expanded the breadth of RNAi functions to include transgenerational epigenetic memory and, possibly, environmental sensing. These functions are inherently linked to the production of secondary siRNAs (small interfering RNAs) that bind to members of a clade of WAGOs (worm-specific Agos). In the present article, we review briefly what is known about the evolution and function of Ago proteins in eukaryotes, including the expansion of WAGOs in nematodes. We postulate that the rapid evolution of WAGOs enables the exceptional functional plasticity of nematodes, including their capacity for parasitism

    An intronic microRNA silences genes that are functionally antagonistic to its host gene

    Get PDF
    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of ‘host’ genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself

    Harnessing AI and computing to advance climate modelling and prediction

    Get PDF
    There are contrasting views on how to produce the accurate predictions that are needed to guide climate change adaptation. Here, we argue for harnessing artificial intelligence, building on domain-specific knowledge and generating ensembles of moderately high-resolution (10–50 km) climate simulations as anchors for detailed hazard models

    A splicing-dependent transcriptional checkpoint associated with prespliceosome formation

    Get PDF
    There is good evidence for functional interactions between splicing and transcription in eukaryotes, but how and why these processes are coupled remain unknown. Prp5 protein (Prp5p) is an RNA-stimulated adenosine triphosphatase (ATPase) required for prespliceosome formation in yeast. We demonstrate through in vivo RNA labeling that, in addition to a splicing defect, the prp5-1 mutation causes a defect in the transcription of intron-containing genes. We present chromatin immunoprecipitation evidence for a transcriptional elongation defect in which RNA polymerase that is phosphorylated at Ser5 of the largest subunit’s heptad repeat accumulates over introns and that this defect requires Cus2 protein. A similar accumulation of polymerase was observed when prespliceosome formation was blocked by a mutation in U2 snRNA. These results indicate the existence of a transcriptional elongation checkpoint that is associated with prespliceosome formation during cotranscriptional spliceosome assembly. We propose a role for Cus2p as a potential checkpoint factor in transcription

    Molecular Characterization and Expression Pattern of Tripartite Motif Protein 39 in Gallus gallus with a Complete PRY/SPRY Domain

    Get PDF
    Members of tripartite motif (TRIM) proteins in mammals play important roles in multiple cellular processes in the immune system. In the present study we have obtained the chicken TRIM39 with the insertion of a base A at position 1006 bp, compared to the sequence in the NCBI database (Accession No: NM 001006196), which made TRIM39 fulfill the TRIM rule of domain composition with both PRY, and SPRY domains. The open reading frame consisted of 1392 bp encoding 463 amino acid residues. The amino acid sequences of TRIM39 protein in mammals were highly similar (from 91.48% to 99.61%), while chicken TRIM39 had relatively low homology with mammals (from 29.2% to 39.59%). Real time RT-PCR indicated that the mRNA expression level of TRIM39 was the highest in spleen, with a lower expression in liver, brain, and lung, suggesting it might be an important protein participating in the immune system

    Evaluation of global fire simulations in CMIP6 Earth system models

    Get PDF
    Fire is the primary form of terrestrial ecosystem disturbance on a global scale and an important Earth system process. Most Earth system models (ESMs) have incorporated fire modeling, with 19 out of them submitting model outputs of fire-related variables to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study provides the first comprehensive evaluation of CMIP6 historical fire simulations by comparing them with multiple satellite-based products and charcoal-based historical reconstructions. Our results show that most CMIP6 models simulate the present-day global burned area and fire carbon emissions within the range of satellite-based products. They also capture the major features of observed spatial patterns and seasonal cycles, the relationship of fires with precipitation and population density, and the influence of El Niño-Southern Oscillation (ENSO) on the interannual variability of tropical fires. Regional fire carbon emissions simulated by the CMIP6 models from 1850 to 2010 generally align with the charcoal-based reconstructions, although there are regional mismatches, such as in southern South America and eastern temperate North America prior to the 1910s and in temperate North America, eastern boreal North America, Europe, and boreal Asia since the 1980s. The CMIP6 simulations have addressed three critical issues identified in the CMIP5: (1) the simulated global burned area less than half of the observations, (2) the failure to reproduce the high burned area fraction observed in Africa, and (3) the weak fire seasonal variability. Furthermore, the CMIP6 models exhibit improved accuracy in capturing the observed relationship between fires and both climatic and socioeconomic drivers, and better align with the historical long-term trends indicated by charcoal-based reconstructions in most regions worldwide. However, the CMIP6 models still fail to reproduce the decline in global burned area and fire carbon emissions observed over the past two decades, mainly attributed to an underestimation of anthropogenic fire suppression, and the spring peak in fires in the Northern Hemisphere mid-latitudes, mainly due to an underestimation of crop fires. In addition, the model underestimates the fire sensitivity to wet-dry conditions, indicating the need to improve fuel wetness estimation. Based on these findings, we present specific guidance for fire scheme development and suggest the post-processing methodology for using CMIP6 multi-model outputs to generate reliable fire projection products

    Optimal control of impulsive switched systems with minimum subsystem durations

    Get PDF
    This paper presents a new computational approach for solving optimal control problems governed by impulsive switched systems. Such systems consist of multiple subsystems operating in succession, with possible instantaneous state jumps occurring when the system switches from one subsystem to another. The control variables are the subsystem durations and a set of system parameters influencing the state jumps. In contrast with most other papers on the control of impulsive switched systems, we do not require every potential subsystem to be active during the time horizon (it may be optimal to delete certain subsystems, especially when the optimal number of switches is unknown). However, any active subsystem must be active for a minimum non-negligible duration of time. This restriction leads to a disjoint feasible region for the subsystem durations. The problem of choosing the subsystem durations and the system parameters to minimize a given cost function is a non-standard optimal control problem that cannot be solved using conventional techniques. By combining a time-scaling transformation and an exact penalty method, we develop a computational algorithm for solving this problem. We then demonstrate the effectiveness of this algorithm by considering a numerical example on the optimization of shrimp harvesting operations

    A framework for automated enrichment of functionally significant inverted repeats in whole genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA transcripts from genomic sequences showing dyad symmetry typically adopt hairpin-like, cloverleaf, or similar structures that act as recognition sites for proteins. Such structures often are the precursors of non-coding RNA (ncRNA) sequences like microRNA (miRNA) and small-interfering RNA (siRNA) that have recently garnered more functional significance than in the past. Genomic DNA contains hundreds of thousands of such inverted repeats (IRs) with varying degrees of symmetry. But by collecting statistically significant information from a known set of ncRNA, we can sort these IRs into those that are likely to be functional.</p> <p>Results</p> <p>A novel method was developed to scan genomic DNA for partially symmetric inverted repeats and the resulting set was further refined to match miRNA precursors (pre-miRNA) with respect to their density of symmetry, statistical probability of the symmetry, length of stems in the predicted hairpin secondary structure, and the GC content of the stems. This method was applied on the <it>Arabidopsis thaliana</it> genome and validated against the set of 190 known Arabidopsis pre-miRNA in the miRBase database. A preliminary scan for IRs identified 186 of the known pre-miRNA but with 714700 pre-miRNA candidates. This large number of IRs was further refined to 483908 candidates with 183 pre-miRNA identified and further still to 165371 candidates with 171 pre-miRNA identified (i.e. with 90% of the known pre-miRNA retained).</p> <p>Conclusions</p> <p>165371 candidates for potentially functional miRNA is still too large a set to warrant wet lab analyses, such as northern blotting, on all of them. Hence additional filters are needed to further refine the number of candidates while still retaining most of the known miRNA. These include detection of promoters and terminators, homology analyses, location of candidate relative to coding regions, and better secondary structure prediction algorithms. The software developed is designed to easily accommodate such additional filters with a minimal experience in Perl.</p
    corecore