172 research outputs found

    Lack of association between the GRP78 polymorphisms in the promoter and 3' UTR and susceptibility to chronic HBV infection in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis B virus (HBV) infection causes large amount of unfolding or false-folding protein accumulation in the endoplasmic reticulum (ER), which in turn induces the expression of glucose-regulated protein 78 (GRP78). The aim in the present study was to analyse the potential association between GRP78 single-nucleotide polymorphisms (SNPs) and the risk of HBV infection.</p> <p>Methods</p> <p>The associations between seven common <it>GRP78 </it>polymorphisms in the promoter (rs391957, rs17840762, rs17840761, rs11355458) and in the 3' untranslated region (UTR) (rs16927997, rs1140763, rs12009) and possible risk of chronic HBV infection were assessed in a case-control study. 496 cases and 539 individually matched healthy controls were genotyped.</p> <p>Results</p> <p>Overall, no associations were observed in genotypic analyses. In addition, haplotypes and diplotypes combining those SNPs in the promoter or in the 3' UTR in high linkage disequilibrium (LD) were also not associated with HBV risk.</p> <p>Conclusion</p> <p>These observations do not support a role for <it>GRP78 </it>polymorphisms in HBV infection in a predominantly Chinese Han population.</p

    Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review

    Get PDF
    Background: Urinary tract infection (UTI) is one of the most common sources of infection in children under five. Prompt diagnosis and treatment is important to reduce the risk of renal scarring. Rapid, cost-effective, methods of UTI diagnosis are required as an alternative to culture. Methods: We conducted a systematic review to determine the diagnostic accuracy of rapid tests for detecting UTI in children under five years of age. Results: The evidence supports the use of dipstick positive for both leukocyte esterase and nitrite (pooled LR+ = 28.2, 95% CI: 17.3, 46.0) or microscopy positive for both pyuria and bacteriuria (pooled LR+ = 37.0, 95% CI: 11.0, 125.9) to rule in UTI. Similarly dipstick negative for both LE and nitrite (Pooled LR- = 0.20, 95% CI: 0.16, 0.26) or microscopy negative for both pyuria and bacteriuria (Pooled LR- = 0.11, 95% CI: 0.05, 0.23) can be used to rule out UTI. A test for glucose showed promise in potty-trained children. However, all studies were over 30 years old. Further evaluation of this test may be useful. Conclusion: Dipstick negative for both LE and nitrite or microscopic analysis negative for both pyuria and bacteriuria of a clean voided urine, bag, or nappy/pad specimen may reasonably be used to rule out UTI. These patients can then reasonably be excluded from further investigation, without the need for confirmatory culture. Similarly, combinations of positive tests could be used to rule in UTI, and trigger further investigation

    How does study quality affect the results of a diagnostic meta-analysis?

    Get PDF
    Background: The use of systematic literature review to inform evidence based practice in diagnostics is rapidly expanding. Although the primary diagnostic literature is extensive, studies are often of low methodological quality or poorly reported. There has been no rigorously evaluated, evidence based tool to assess the methodological quality of diagnostic studies. The primary objective of this study was to determine the extent to which variations in the quality of primary studies impact the results of a diagnostic meta-analysis and whether this differs with diagnostic test type. A secondary objective was to contribute to the evaluation of QUADAS, an evidence-based tool for the assessment of quality in diagnostic accuracy studies. Methods: This study was conducted as part of large systematic review of tests used in the diagnosis and further investigation of urinary tract infection (UTI) in children. All studies included in this review were assessed using QUADAS, an evidence-based tool for the assessment of quality in systematic reviews of diagnostic accuracy studies. The impact of individual components of QUADAS on a summary measure of diagnostic accuracy was investigated using regression analysis. The review divided the diagnosis and further investigation of UTI into the following three clinical stages: diagnosis of UTI, localisation of infection, and further investigation of the UTI. Each stage used different types of diagnostic test, which were considered to involve different quality concerns. Results: Many of the studies included in our review were poorly reported. The proportion of QUADAS items fulfilled was similar for studies in different sections of the review. However, as might be expected, the individual items fulfilled differed between the three clinical stages. Regression analysis found that different items showed a strong association with test performance for the different tests evaluated. These differences were observed both within and between the three clinical stages assessed by the review. The results of regression analyses were also affected by whether or not a weighting (by sample size) was applied. Our analysis was severely limited by the completeness of reporting and the differences between the index tests evaluated and the reference standards used to confirm diagnoses in the primary studies. Few tests were evaluated by sufficient studies to allow meaningful use of meta-analytic pooling and investigation of heterogeneity. This meant that further analysis to investigate heterogeneity could only be undertaken using a subset of studies, and that the findings are open to various interpretations. Conclusion: Further work is needed to investigate the influence of methodological quality on the results of diagnostic meta-analyses. Large data sets of well-reported primary studies are needed to address this question. Without significant improvements in the completeness of reporting of primary studies, progress in this area will be limited

    Wnt/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells

    Get PDF
    The Wnt/β-catenin signaling pathway is involved in the normal development of thyroid gland, but its disregulation provokes the appearance of several types of cancers, including papillary thyroid carcinomas (PTC) which are the most common thyroid tumours. The follow-up of PTC patients is based on the monitoring of serum thyroglobulin levels which is regulated by the thyroid transcription factor 1 (TTF-1): a tissue-specific transcription factor essential for the differentiation of the thyroid. We investigated whether the Wnt/β-catenin pathway might regulate TTF-1 expression in a human PTC model and examined the molecular mechanisms underlying this regulation. Immunofluorescence analysis, real time RT-PCR and Western blot studies revealed that TTF-1 as well as the major Wnt pathway components are co-expressed in TPC-1 cells and human PTC tumours. Knocking-down the Wnt/β-catenin components by siRNAs inhibited both TTF-1 transcript and protein expression, while mimicking the activation of Wnt signaling by lithium chloride induced TTF-1 gene and protein expression. Functional promoter studies and ChIP analysis showed that the Wnt/β-catenin pathway exerts its effect by means of the binding of β-catenin to TCF/LEF transcription factors on the level of an active TCF/LEF response element at [−798, −792 bp] in TTF-1 promoter. In conclusion, we demonstrated that the Wnt/β-catenin pathway is a direct and forward driver of the TTF-1 expression. The localization of TCF-4 and TTF-1 in the same area of PTC tissues might be of clinical relevance, and justifies further examination of these factors in the papillary thyroid cancers follow-up

    Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of predictive markers of response to treatment is a major objective in breast cancer. A major problem in clinical sampling is the variability of RNA templates, requiring accurate management of tumour material and subsequent analyses for future translation in clinical practice. Our aim was to establish the feasibility and reliability of high throughput RNA analysis in a prospective trial.</p> <p>Methods</p> <p>This study was conducted on RNA from initial biopsies, in a prospective trial of neoadjuvant chemotherapy in 327 patients with inoperable breast cancer. Four independent centres included patients and samples. Human U133 GeneChips plus 2.0 arrays for transcriptome analysis and quantitative RT-qPCR of 45 target genes and 6 reference genes were analysed on total RNA.</p> <p>Results</p> <p>Thirty seven samples were excluded because <it>i) </it>they contained less than 30% malignant cells, or <it>ii) </it>they provided RNA Integrity Number (RIN) of poor quality. Among the 290 remaining cases, taking into account strict quality control criteria initially defined to ensure good quality of sampling, 78% and 82% samples were eligible for transcriptome and RT-qPCR analyses, respectively. For RT-qPCR, efficiency was corrected by using standard curves for each gene and each plate. It was greater than 90% for all genes. Clustering analysis highlighted relevant breast cancer phenotypes for both techniques (ER+, PR+, HER2+, triple negative). Interestingly, clustering on trancriptome data also demonstrated a "centre effect", probably due to the sampling or extraction methods used in on of the centres. Conversely, the calibration of RT-qPCR analysis led to the centre effect withdrawing, allowing multicentre analysis of gene transcripts with high accuracy.</p> <p>Conclusions</p> <p>Our data showed that strict quality criteria for RNA integrity assessment and well calibrated and standardized RT-qPCR allows multicentre analysis of genes transcripts with high accuracy in the clinical context. More stringent criteria are needed for transcriptome analysis for clinical applications.</p

    Health-related physical fitness of adolescents and young adults with myelomeningocele

    Get PDF
    To assess components of health-related physical fitness in adolescents and young adults with myelomeningocele (MMC), and to study relations between aerobic capacity and other health-related physical fitness components. This cross-sectional study included 50 adolescents and young adults with MMC, aged 16–30 years (25 males). Aerobic capacity was quantified by measuring peak oxygen uptake (peakVO2) during a maximal exercise test on a cycle or arm ergometer depending on the main mode of ambulation. Muscle strength of upper and lower extremity muscles was assessed using a hand-held dynamometer. Regarding flexibility, we assessed mobility of hip, knee and ankle joints. Body composition was assessed by measuring thickness of four skin-folds. Relations were studied using linear regression analyses. Average peakVO2 was 1.48 ± 0.52 l/min, 61% of the participants had subnormal muscle strength, 61% had mobility restrictions in at least one joint and average sum of four skin-folds was 74.8 ± 38.8 mm. PeakVO2 was significantly related to gender, ambulatory status and muscle strength, explaining 55% of its variance. Adolescents and young adults with MMC have poor health-related physical fitness. Gender and ambulatory status are important determinants of peakVO2. In addition, we found a small, but significant relationship between peakVO2 and muscle strength

    miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1

    Get PDF
    As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al

    Dissecting Epigenetic Silencing Complexity in the Mouse Lung Cancer Suppressor Gene Cadm1

    Get PDF
    Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3), and opposing histone modification marks (H3K4me3 and H3K27me3) all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and ‘bivalent’ histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer
    corecore