20 research outputs found

    Transgender Healthcare Resources for Clinicians in Vermont

    Get PDF
    Transgender individuals face disproportionate levels of discrimination in healthcare settings and have worse health than their cisgender peers. One major barrier to healthcare reported by transgender individuals is a lack of providers who are sufficiently knowledgeable on the topic. The 2011 National Transgender Discrimination Survey found that half of respondents reported having to teach their providers about their own healthcare. To address this problem in Vermont, transgender healthcare resources were compiled into a single document to be distributed to primary care practices around Vermont.https://scholarworks.uvm.edu/fmclerk/1755/thumbnail.jp

    A Precisely Regulated Gene Expression Cassette Potently Modulates Metastasis and Survival in Multiple Solid Cancers

    Get PDF
    Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270) compared to nonmalignant tissues (n = 71). Comprising genes linked to multiple cancer-related pathways, the restricted expression of this “Poised Gene Cassette” (PGC) was robustly validated across 11 independent cohorts of ∼1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP), which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies

    A Densely Interconnected Genome-Wide Network of MicroRNAs and Oncogenic Pathways Revealed Using Gene Expression Signatures

    Get PDF
    MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA–pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes (“hubs”), most nodes in the miRNA–pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA–pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available

    Changes in High Molecular Weight Glutenin Subunit Composition Can Be Genetically Engineered without Affecting Wheat Agronomic Performance

    No full text
    The genomes of modern cultivars have been painstakingly selected for the presence of favorable alleles at multiple loci, which interact to produce superior phenotypes. Genetic transformation provides a tool to introduce new genes without altering the original gene combinations. However, the random genetic and epigenetic changes sometimes generated by the transformation process have been associated with losses in agronomic performance. The agronomic performance of 50 transgenic wheat (Triticum aestivum L.) lines containing additional copies of native or modified high molecular weight glutenin subunit (HMW-GS) genes and the selectable marker bar, their untransformed parent 'Bobwhite', four lines containing only bar, and 10 null segregant lines were assessed in small plot trials over 2 yr and three locations. Most of the transgenic lines did not show significant changes in performance relative to Bobwhite, although the transgenic lines as a group tended toward lower performance. Null-segregant and bar-only lines performed similarly to Bobwhite. No relationship could be established between performance and particular transgenes or their expression levels. Despite the overall lower performance of the transgenic lines, many with agronomic performance equivalent to Bobwhite were identified. These findings suggest that extant techniques for genetic engineering of wheat are capable of producing agronomically competitive lines for use as cultivars or parents in breeding programs. © Crop Science Society of America

    AN OPTIMIZATION PROBLEM FOR A PRODUCTION SYSTEM WITH REAL OPTION APPROACH (Nonlinear Analysis and Convex Analysis)

    Get PDF
    Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes
    corecore