17 research outputs found

    Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh

    Get PDF
    Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues

    Toso controls encephalitogenic immune responses by dendritic cells and regulatory T cells

    No full text
    The ability to mount a strong immune response against pathogens is crucial for mammalian survival. However, excessive and uncontrolled immune reactions can lead to autoimmunity. Unraveling how the reactive versus tolerogenic state is controlled might point toward novel therapeutic strategies to treat autoimmune diseases. The surface receptor Toso/Faim3 has been linked to apoptosis, IgM binding, and innate immune responses. In this study, we used Toso-deficient mice to investigate the importance of Toso in tolerance and autoimmunity. We found that Toso(-/-) mice do not develop severe experimental autoimmune encephalomyelitis (EAE), a mouse model for the human disease multiple sclerosis. Toso(-/-) dendritic cells were less sensitive to Toll-like receptor stimulation and induced significantly lower levels of disease-associated inflammatory T-cell responses. Consistent with this observation, the transfer of Toso(-/-) dendritic cells did not induce autoimmune diabetes, indicating their tolerogenic potential. In Toso(-/-) mice subjected to EAE induction, we found increased numbers of regulatory T cells and decreased encephalitogenic cellular infiltrates in the brain. Finally, inhibition of Toso activity in vivo at either an early or late stage of EAE induction prevented further disease progression. Taken together, our data identify Toso as a unique regulator of inflammatory autoimmune responses and an attractive target for therapeutic intervention

    Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium

    Get PDF
    Cell culture system has been used to evaluate alloy cytotoxicity under different environments, testing the extracts, but the effect of temperature variation on the cytotoxicity of dental alloys has not been analyzed. OBJECTIVE: The aim of the present study was to investigate if temperature variation could affect dental alloy cytotoxicity, testing alloy extracts in an epithelial cell culture system. MATERIAL AND METHODS: Discs of Ni-Cr, Co-Cr-Mo, Ni-Cr-Ti, Ti-6Al-4V and commercially pure titanium (cp Ti) were cast by arc melting, under argon atmosphere, injected by vacuum-pressure. Discs were immersed in artificial saliva and subjected to different temperatures: 37ºC and thermocycling (37ºC/5ºC/37ºC/55ºC/37ºC). After thermocycling, extracts were put in a subconfluent culture during 6 h, and the number of cells and their viability were used to evaluate cytotoxicity in these temperatures. For each alloy, data from temperature conditions were compared by Student's t-test (&#945;=0.05). RESULTS: The cytotoxicity tests with alloy/metal extracts showed that Ni-Cr, Co-Cr-Mo, Ti-6Al-4V and cp Ti extracts (p>0.05) did not affect cell number or cell viability, while Ni-Cr-Ti (p<0.05) extract decreased cell number and viability when the alloy was subjected to thermocycling. CONCLUSION: Within the limitations of the present study, the Ni-Cr-Ti alloy had cell number and viability decreased when subjected to temperature variation, while the other alloys/metal extracts did not show these results

    The circadian molecular clock creates epidermal stem cell heterogeneity

    Get PDF
    Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis
    corecore