129 research outputs found

    A compatible exon-exon junction database for the identification of exon skipping events using tandem mass spectrum data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched.</p> <p>Results</p> <p>We wrote scripts in perl, Bioperl, mysql and Ensembl API and built a theoretical exon-exon junction protein database to account for all possible combinations of exons for a gene while keeping the frame of translation (i.e., keeping only in-phase exon-exon combinations) from the Ensembl Core Database. Using our liver cancer MS/MS dataset, we identified a total of 488 non-redundant peptides that represent putative exon skipping events.</p> <p>Conclusion</p> <p>Our exon-exon junction database provides the scientific community with an efficient means to identify novel alternatively spliced (exon skipping) protein isoforms using mass spectrometry data. This database will be useful in annotating genome structures using rapidly accumulating proteomics data.</p

    WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification.</p> <p>Results</p> <p>We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the <b>Trans-Proteomic Pipeline (TPP)</b>, a commonly used open source proteomics analysis pipeline.</p> <p>Conclusions</p> <p>We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at <url>http://systemsbiozju.org/data/WaveletQuant</url>.</p

    Massively Parallel Signature Sequencing and Bioinformatics Analysis Identifies Up-Regulation of TGFBI and SOX4 in Human Glioblastoma

    Get PDF
    BACKGROUND: A comprehensive network-based understanding of molecular pathways abnormally altered in glioblastoma multiforme (GBM) is essential for developing effective therapeutic approaches for this deadly disease. METHODOLOGY/PRINCIPAL FINDINGS: Applying a next generation sequencing technology, massively parallel signature sequencing (MPSS), we identified a total of 4535 genes that are differentially expressed between normal brain and GBM tissue. The expression changes of three up-regulated genes, CHI3L1, CHI3L2, and FOXM1, and two down-regulated genes, neurogranin and L1CAM, were confirmed by quantitative PCR. Pathway analysis revealed that TGF- beta pathway related genes were significantly up-regulated in GBM tumor samples. An integrative pathway analysis of the TGF beta signaling network identified two alternative TGF-beta signaling pathways mediated by SOX4 (sex determining region Y-box 4) and TGFBI (Transforming growth factor beta induced). Quantitative RT-PCR and immunohistochemistry staining demonstrated that SOX4 and TGFBI expression is elevated in GBM tissues compared with normal brain tissues at both the RNA and protein levels. In vitro functional studies confirmed that TGFBI and SOX4 expression is increased by TGF-beta stimulation and decreased by a specific inhibitor of TGF-beta receptor 1 kinase. CONCLUSIONS/SIGNIFICANCE: Our MPSS database for GBM and normal brain tissues provides a useful resource for the scientific community. The identification of non-SMAD mediated TGF-beta signaling pathways acting through SOX4 and TGFBI (GENE ID:7045) in GBM indicates that these alternative pathways should be considered, in addition to the canonical SMAD mediated pathway, in the development of new therapeutic strategies targeting TGF-beta signaling in GBM. Finally, the construction of an extended TGF-beta signaling network with overlaid gene expression changes between GBM and normal brain extends our understanding of the biology of GBM

    ChIP-seq and Functional Analysis of the SOX2 Gene in Colorectal Cancers

    Get PDF
    SOX2 is anHMGbox containing transcription factor that has been implicated in various types of cancer, but its role in colorectal cancers (CRC) has not been studied. Here we show that SOX2 is overexpressed in CRC tissues compared with normal adjacent tissues using immunohistochemical staining and RT-PCR. We also observed an increased SOX2 expression in nucleus of colorectal cancer tissues (46%, 14/30 cases vs. 7%, 2/30 adjacent tissues). Furthermore, knockdown of SOX2 in SW620 colorectal cancer cells decreased their growth rates in vitro cell line, and in vivo in xenograft models. ChIP-Seq analysis of SOX2 revealed a consensus sequence of wwTGywTT. An integrated expression profiling and ChIP-seq analysis show that SOX2 is involved in the BMP signaling pathway, steroid metabolic process, histone modifications, and many receptor-mediated signaling pathways such as IGF1R and ITPR2 (Inositol 1,4,5-triphosphate receptor, type 2).MOST, Chin

    Human Plasma PeptideAtlas

    Get PDF
    Peptide identifications of high probability from 28 LC-MS/MS human serum and plasma experiments from eight different laboratories, carried out in the context of the HUPO Plasma Proteome Project, were combined and mapped to the EnsEMBL human genome. The 6929 distinct observed peptides were mapped to approximately 960 different proteins. The resulting compendium of peptides and their associated samples, proteins, and genes is made publicly available as a reference for future research on human plasma

    Expression Profiling and Proteomic Analysis of JIN Chinese Herbal Formula in Lung Carcinoma H460 Xenografts

    Get PDF
    Many traditional Chinese medicine (TCM) formulae have been used in cancer therapy. The JIN formula is an ancient herbal formula recorded in the classic TCM book Jin Kui Yao Lue (Golden Chamber). The JIN formula significantly delayed the growth of subcutaneous human H460 xenografted tumors in vivo compared with the growth of mock controls. Gene array analysis of signal transduction in cancer showed that the JIN formula acted on multiple targets such as the mitogen-activated protein kinase, hedgehog, and Wnt signaling pathways. The coformula treatment of JIN and diamminedichloroplatinum (DDP) affected the stress/heat shock pathway. Proteomic analysis showed 36 and 84 differentially expressed proteins between the mock and DDP groups and between the mock and JIN groups, respectively. GoMiner analysis revealed that the differentially expressed proteins between the JIN and mock groups were enriched during cellular metabolic processes, and so forth. The ones between the DDP and mock groups were enriched during protein-DNA complex assembly, and so forth. Most downregulated proteins in the JIN group were heat shock proteins (HSPs) such as HSP90AA1 and HSPA1B, which could be used as markers to monitor responses to the JIN formula therapy. The mechanism of action of the JIN formula on HSP proteins warrants further investigation

    Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry

    Get PDF
    A crucial aim upon the completion of the human genome is the verification and functional annotation of all predicted genes and their protein products. Here we describe the mapping of peptides derived from accurate interpretations of protein tandem mass spectrometry (MS) data to eukaryotic genomes and the generation of an expandable resource for integration of data from many diverse proteomics experiments. Furthermore, we demonstrate that peptide identifications obtained from high-throughput proteomics can be integrated on a large scale with the human genome. This resource could serve as an expandable repository for MS-derived proteome information

    An appeal to the global health community for a tripartite innovation: an ‘‘Essential Diagnostics List,’’ ‘‘Health in All Policies,’’ and ‘‘See-Through 21st Century Science and Ethics"

    Get PDF
    Diagnostics spanning a wide range of new biotechnologies, including proteomics, metabolomics, and nanotechnology, are emerging as companion tests to innovative medicines. In this Opinion, we present the rationale for promulgating an ‘‘Essential Diagnostics List.’’ Additionally, we explain the ways in which adopting a vision for ‘‘Health in All Policies’’ could link essential diagnostics with robust and timely societal outcomes such as sustainable development, human rights, gender parity, and alleviation of poverty. We do so in three ways. First, we propose the need for a new, ‘‘see through’’ taxonomy for knowledge-based innovation as we transition from the material industries (e.g., textiles, plastic, cement, glass) dominant in the 20th century to the anticipated knowledge industry of the 21st century. If knowledge is the currency of the present century, then it is sensible to adopt an approach that thoroughly examines scientific knowledge, starting with the production aims, methods, quality, distribution, access, and the ends it purports to serve. Second, we explain that this knowledge trajectory focus on innovation is crucial and applicable across all sectors, including public, private, or public–private partnerships, as it underscores the fact that scientific knowledge is a co-product of technology, human values, and social systems. By making the value systems embedded in scientific design and knowledge co-production transparent, we all stand to benefit from sustainable and transparent science. Third, we appeal to the global health community to consider the necessary qualities of good governance for 21st century organizations that will embark on developing essential diagnostics. These have importance not only for science and knowledge based innovation, but also for the ways in which we can build open, healthy, and peaceful civil societies today and for future generations

    The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>SOX2 </it>is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. <it>SOX2 </it>appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of <it>SOX2 </it>in GBM has not yet been defined.</p> <p>Results</p> <p>We show that knockdown of the <it>SOX2 </it>gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the <it>SOX2 </it>response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 <it>SOX2 </it>binding regions in the GBM cancer genome. <it>SOX2 </it>binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 <it>SOX2 </it>binding regions. Microarray analysis identified 489 genes whose expression altered in response to <it>SOX2 </it>knockdown. Interesting findings include that <it>SOX2 </it>regulates the expression of SOX family proteins <it>SOX1 </it>and <it>SOX18</it>, and that <it>SOX2 </it>down regulates <it>BEX1 </it>(brain expressed X-linked 1) and <it>BEX2 </it>(brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by <it>SOX2</it>, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and <it>SOX2 </it>form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.</p> <p>Conclusions</p> <p>We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the <it>SOX2 </it>response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of <it>SOX2 </it>in carcinogenesis and serves as a useful resource for the research community.</p
    corecore