60 research outputs found

    Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta_2O_5)

    Get PDF
    Amorphous tantala (a-Ta_2O_5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta_2O_5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta 2O5 and other a-T_2O_5 studies

    Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking

    Get PDF
    We propose the hybrid gravity-gauge mediated supersymmetry breaking where the gravitino mass is about several GeV. The strong constraints on supersymmetry viable parameter space from the CMS and ATLAS experiments at the LHC can be relaxed due to the heavy colored supersymmetric particles, and it is consistent with null results in the dark matter (DM) direct search experiments such as XENON100. In particular, the possible maximal flavor and CP violations from the relatively small gravity mediation may naturally account for the recent LHCb anomaly. In addition, because the gravitino mass is around the asymmetric DM mass, we propose the asymmetric origin of the gravitino relic density and solve the cosmological coincident problem on the DM and baryon densities \Omega_{\rm DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric metastable particle (AMP) late decay. However, we show that there is no AMP candidate in the minimal supersymmetric Standard Model (SM) due to the robust gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized in the well motivated supersymmetric SMs with vector-like particles or continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio

    Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks

    Full text link
    It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship ΩB∌ΩDM\Omega_B\sim\Omega_{DM} via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1GeVâ‰ČmDMâ‰Č\lesssim m_{DM} \lesssim 100GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio

    The effects of hypertonic fluid administration on the gene expression of inflammatory mediators in circulating leucocytes in patients with septic shock: a preliminary study

    Get PDF
    Contains fulltext : 98426.pdf (publisher's version ) (Open Access)ABSTRACT: OBJECTIVE: This study was designed to investigate the effect of hypertonic fluid administration on inflammatory mediator gene expression in patients with septic shock. DESIGN AND SETTING: Prospective, randomized, controlled, double-blind clinical study in a 15-bed mixed intensive care unit in a tertiary referral teaching hospital. INTERVENTIONS: Twenty-four patients, who met standard criteria for septic shock, were randomized to receive a bolus of hypertonic fluid (HT, 250 ml 6% HES/7.2% NaCl) or isotonic fluid (IT, 500 ml 6% HES/0.9% NaCl) administered over 15 minutes. Randomization and study fluid administration was within 24 hours of ICU admission for all patients. This trial is registered with ANZCTR.org.au as ACTRN12607000259448. RESULTS: Blood samples were taken immediately before and 4, 8, 12, and 24 hours after fluid administration. Real-time reverse transcriptase polymerase chain reaction (RT rtPCR) was used to quantify mRNA expression of different inflammatory mediators in peripheral leukocytes. In the HT group, compared with the IT group, levels of gene expression of MMP9 and L-selectin were significantly suppressed (p = 0.0002 and p = 0.007, respectively), and CD11b gene expression tended to be elevated (p = NS). No differences were found in the other mediators examined. CONCLUSIONS: In septic shock patients, hypertonic fluid administration compared with isotonic fluid may modulate expression of genes that are implicated in leukocyte-endothelial interaction and capillary leakage.The study was performed at the Intensive Care Department, Waikato Hospital, and at the Molecular Genetics Laboratory, University of Waikato, Hamilton, New Zealand. TRIAL REGISTRATION: Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12607000259448

    Light dark matter in the NMSSM: upper bounds on direct detection cross sections

    Get PDF
    In the Next-to-Minimal Supersymmetric Standard Model, a bino-like LSP can be as light as a few GeV and satisfy WMAP constraints on the dark matter relic density in the presence of a light CP-odd Higgs scalar. We study upper bounds on the direct detection cross sections for such a light LSP in the mass range 2-20 GeV in the NMSSM, respecting all constraints from B-physics and LEP. The OPAL constraints on e^+ e^- -> \chi^0_1 \chi^0_i (i > 1) play an important role and are discussed in some detail. The resulting upper bounds on the spin-independent and spin-dependent nucleon cross sections are ~ 10^{-42} cm^{-2} and ~ 4\times 10^{-40} cm^{-2}, respectively. Hence the upper bound on the spin-independent cross section is below the DAMA and CoGeNT regions, but could be compatible with the two events observed by CDMS-II.Comment: 17 pages, 3 figure

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio
    • 

    corecore