53 research outputs found

    A semi-automated non-radiactive system for measuring recovery of RNA synthesis and unscheduled DNA synthesis using ethynyluracil derivatives

    Get PDF
    Nucleotide excision repair (NER) removes the major UV-photolesions from cellular DNA. In humans, compromised NER activity is the cause of several photosensitive diseases, one of which is the skin-cancer predisposition disorder, xeroderma pigmentosum (XP). Two assays commonly used in measurement of NER activity are ‘unscheduled DNA synthesis (UDS)’, and ‘recovery of RNA synthesis (RRS)’, the latter being a specific measure of the transcription-coupled repair sub-pathway of NER. Both assays are key techniques for research in NER as well as in diagnoses of NER-related disorders. Until very recently, reliable methods for these assays involved measurements of incorporation of radio-labeled nucleosides. We have established non-radioactive procedures for determining UDS and RRS levels by incorporation of recently developed alkyne-conjugated nucleoside analogues, 5-ethynyl-2′-deoxyuridine (EdU) and 5-ethynyuridine (EU). EdU and EU are respectively used as alternatives for 3H-thymidine in UDS and for 3H-uridine in RRS. Based on these alkyne-nucleosides and an integrated image analyser, we have developed a semi-automated assay system for NER-activity. We demonstrate the utility of this system for NER-activity assessments of lymphoblastoid samples as well as primary fibroblasts. Potential use of the system for large-scale siRNA-screening for novel NER defects as well as for routine XP diagnosis are also considered

    Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells

    Get PDF
    Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both polκ and polδ, and both polymerases can be recovered in the same repair complexes. Polκ is recruited to repair sites by ubiquitinated PCNA and XRCC1 and polδ by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on polɛ, recruitment of which is dependent on the alternative clamp loader CTF18-RFC

    A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU)

    Get PDF
    Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder. Afflicted patients show extreme sun-sensitivity and skin cancer predisposition. XP is in most cases associated with deficient nucleotide excision repair (NER), which is the process responsible for removing photolesions from DNA. Measuring NER activity by nucleotide incorporation into repair patches, termed ‘unscheduled DNA synthesis (UDS)’, is one of the most commonly used assays for XP-diagnosis and NER research. We have established a rapid and accurate procedure for measuring UDS by replacement of thymidine with 5-ethynyl-2'-deoxyuridine (EdU). EdU incorporated into repair patches can be directly conjugated to fluorescent azide derivatives, thereby obviating the need for either radiolabeled thymidine or denaturation and antibody detection of incorporated bromodeoxyuridine (BrdU). We demonstrate that the EdU incorporation assay is compatible with conventional techniques such as immunofluorescent staining and labeling of cells with micro-latex beads. Importantly, we can complete the entire UDS assay within half a day from preparation of the assay coverslips; this technique may prove useful as a method for XP diagnosis

    Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome

    Get PDF
    A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define

    Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients

    Get PDF
    Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1

    Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair

    Get PDF
    UV-sensitive syndrome (UVSS) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma1, 2, 3, 4. Despite mild clinical features, cells from individuals with UVSS, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER)2, 4, 5, which removes DNA damage in actively transcribed genes6. Three of the seven known UVSS cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively)7, 8. The remaining four individuals with UVSS, one of whom is described for the first time here, formed a separate UVSS-A complementation group1, 9, 10; however, the responsible gene was unknown. Using exome sequencing11, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UVSS-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders

    Control of LH secretion in red deer (Cervus elaphus)

    No full text
    The feedback effects of ovarian steroids on the secretion of luteinizing hormone (LH) have been well established in many species. This thesis describes a series of studies which examined the effects of oestradiol, progesterone, and season on the pulsatile secretion of LH in red deer (Cervus elaphus). In the first experiment two groups of long-term ovariectomized hinds (n=10, with and without intravaginal progesterone pre-treatment) were injected i.m. with 0, 5, or 100 µg oestradiol-17β, 24 h after the withdrawal of progesterone treatment. Eight entire hinds were included in these experiments as a control group (endogenous oestradiol). LH concentration was measured in plasma samples taken at regular intervals for up to 38 h in the anoestrous (February and March, 1990) and breeding seasons (April and May, 1990). In ovariectomized hinds, a low dose of oestradiol (5 µg) was able to suppress LH pulse frequency and mean concentration in the anoestrous season, but not in the breeding season. Dosage of oestradiol affected the time to onset of suppression - the greater the dose, the shorter the time required, and the high dose (100 µg) elicited a biphasic response of LH secretion. The latter response was an initial suppression (negative feedback) followed by an increase in LH pulse frequency (positive feedback) which culminated in a preovulatory LH surge-like secretion pattern 16.7 ± 2.9 h after oestradiol injection. LH surges were also evident in entire hinds after the withdrawal of progesterone pre-treatment and the timing of these surges and their characteristics were comparable to those of ovariectomized hinds. Progesterone exhibited two roles in the regulation of secretion of LH, namely an inhibitory effect on LH secretion during its presence and a priming effect on the subsequent LH secretory response to the stimulatory effect of oestradiol. Moreover, the decline of plasma progesterone concentration (following the withdrawal of intravaginal progesterone treatment) advanced the timing of onset of LH surges. The second experiment was carried out to define the site where oestradiol achieved its negative feedback effect. Exogenous GnRH (50 ng/kg live weight) was injected i.v. into ovariectomized hinds (n=9) 8 h following injection of 0, 5, or 100 µg oestradiol. All hinds had an elevation of plasma LH concentration immediately after injection of GnRH, indicating that the pituitary was responsive to GnRH even when LH secretion was suppressed by oestradiol. However, the amplitude of the LH response was lower in oestradiol-treated hinds than in control animals, suggesting that pituitary responsiveness to GnRH was partly suppressed by oestradiol treatment. This indicated that in red deer hinds oestradiol achieved its negative feedback effects at both hypothalamic and pituitary gland sites. Another study investigated the effect of dose of exogenous GnRH on LH pulse amplitude. Four anoestrous hinds were injected with 0, 2, 4, and 16 µg GnRH so that each hind received every dose, 1 dose per day over 4 days. The results showed a direct relationship between dose of GnRH and amplitude of the LH response. Therefore, in red deer LH pulse amplitude is partly governed by GnRH pulse amplitude. Sexual differences in the feedback effects of oestradiol on LH secretion were investigated by carrying out a study, comparable to the first experiments, on long-term castrated stags (n=6). These were conducted in December 1990 (non-breeding season) and May 1991 (breeding season). LH pulse frequency in these stags was suppressed by oestradiol treatment but only at the higher dose (100 µg) and there was no evidence of change in pituitary responsiveness to the injection of exogenous GnRH (50 ng/kg live weight). This indicated that, although oestradiol had a negative feedback effect on LH secretion in stags as well as in hinds, there were some sexual differences in the regulation of secretion of LH in red deer. These included lower sensitivity of stags to the inhibitory effects of oestradiol and an evidence that oestradiol exerted its effect at the level of the hypothalamus only. These studies also showed that the seasonal shifts in LH secretion of red deer were due to alteration in sensitivity to the inhibitory feedback effect of oestradiol and also to a direct steroid-independent effect of season on the hypothalamo-pituitary axis. The experiments described in this thesis have added to the fundamental knowledge of the interrelationship between components of the hypothalamo-pituitary-axis in red deer and are the first to examine collectively the effects of oestradiol, progesterone, season and sex in this species. They have shown that the interaction between the feedback effects of oestradiol and the secretion of LH in red deer is similar to that which is well established in sheep

    Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell

    No full text
    Spearmint oil (SMO), a commonly used essential oil for oral care products, possesses various interesting functions, especially for anticancer property. However, the application of SMO for cancer treatment is limited due to water insoluble. In the present study, nanoemulsions, which have been widely accepted as dosage forms for poorly water-soluble drugs, were selected as candidate carriers for SMO to inhibit oral cancer cell. The nanoemulsions were fabricated using phase inversion temperature method. The factors affecting formation and properties of nanoemulsions including type and amount of surfactants, oil loading and ratio of SMO to virgin coconut oil (VCO) were investigated. Among the surfactants used, the nanoemulsions containing polyoxyethylene castor oil derivatives (Kolliphor®EL; PCO35, Cremophor®RH40; PCO40, Eumulgin®CO60; PCO60) and polyoxyethylene sorbitan fatty acid esters (PSF80) showed 100% creaming after temperature cycling test indicating excellent physical stability while those containing PCO40 demonstrated more transparency and better physical stability. With an increasing amount of PCO40, the droplet size tended to decrease and was in the nano-size range (<1000 nm) after increasing to more than 5% (w/w). SMO-VCO loading also influenced on the droplet size. At 5% (w/w) PCO40, the maximum SMO-VCO loading of 25% (w/w) to attain nanoemulsions was observed. Moreover, the composition of oils had an impact on size of emulsions. The transparent nanoemulsions were only prepared in the range of SMO-VCO from 40:60 to 80:20, suggesting the optimum ratio of SMO to surfactant and the composition of oils were the critical factors for formation of nanoemulsions. NMR study disclosed that the interaction between PCO40 with both VCO and SMO should be a possible stabilization mechanism. Furthermore, the SMO-VCO nanoemulsions exhibited significant cytotoxic effect against oral carcinoma (KON) cell line using MTT assay. The finding, therefore, revealed the good feasibility of SMO-VCO nanoemulsions as novel carriers for treating of oral cancer. Keywords: Nanoemulsions, Spearmint oil, Coconut oil, Surfactants, Anticancer, NM

    Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity

    No full text
    We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes
    corecore