9,723 research outputs found

    The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?

    Get PDF
    Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the parameters describing the mass (light) distribution in galaxies. Following recent photometrical work (Caon et al. 1993; Graham & Colless 1997; Prugniel & Simien 1997), we use the Sersic law to describe the light profile of elliptical galaxies and an analytical approximation to its three dimensional deprojection. The specific entropy is calculated supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal gas state equations. We predict a relation between the 3 parameters of the Sersic, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in Coma and ABCG 85 clusters and a group of galaxies (associated with NGC 4839). We show that the galaxies in clusters follow closely a relation predicted by the constant specific entropy hypothesis with a one-sigma dispersion of 9.5% around the mean value of the specific entropy. Assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between the studied clusters. If the errors are only due to the determination of the specific entropy (about 10%), then the error in the relative distance determination should be less than 20% for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sersic profile put forward by Young & Currie (1994, 1995) and discussed by Binggeli & Jerjen (1998).Comment: Submitted to MNRAS (05/05/99), 15 pages, 10 figure

    Mass formula for T=0 and T=1 ground states of N=Z nuclei

    Get PDF
    An algebraic model is developed to calculate the T=0 and T=1 ground state binding energies for N=Z nuclei. The method is tested in the sd shell and is then extended to 28-50 shell which is currently the object of many experimental studies.Comment: 5 figure

    Free-floating molecular clumps and gas mixing: hydrodynamic aftermaths of the intracluster-interstellar medium interaction

    Full text link
    The interaction of gas-rich galaxies with the intra-cluster medium (ICM) of galaxy clusters has a remarkable impact on their evolution, mainly due to the gas loss associated with this process. In this work, we use an idealised, high-resolution simulation of a Virgo-like cluster, run with RAMSES and with dynamics reproducing that of a zoom cosmological simulation, to investigate the interaction of infalling galaxies with the ICM. We find that the tails of ram pressure stripped galaxies give rise to a population of up to more than a hundred clumps of molecular gas lurking in the cluster. The number count of those clumps varies a lot over time -- they are preferably generated when a large galaxy crosses the cluster (M200c>1012_{200c} > 10^{12} M_\odot), and their lifetime (300\lesssim 300 Myr) is small compared to the age of the cluster. We compute the intracluster luminosity associated with the star formation which takes place within those clumps, finding that the stars formed in all of the galaxy tails combined amount to an irrelevant contribution to the intracluster light. Surprisingly, we also find in our simulation that the ICM gas significantly changes the composition of the gaseous disks of the galaxies: after crossing the cluster once, typically 20% of the cold gas still in those disks comes from the ICM.Comment: 9 pages, 6 figures. Accepted for publication in MNRA

    Giant Ringlike Radio Structures Around Galaxy Cluster Abell 3376

    Get PDF
    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant (~2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10^18 to 10^19 electron volts.Comment: Published on Science, 3 November 2006. Main paper and Supporting Online Materia

    The entropy of elliptical galaxies in Coma: a clue for a distance indicator

    Get PDF
    We have fitted the surface brightness of a sample of 79 elliptical galaxies pertaining to the Coma cluster of galaxies using the Sersic profile. This model is defined through three primary parameters: scale length (a), intensity (\Sigma_0), and a shape parameter (\nu); physical and astrophysical quantities may be computed from these parameters. We show that correlations are stronger among primary parameters than the classical astrophysical ones. In particular, the galaxies follow a high correlation in \nu and a parameters. We show that the \nu and a correlation satisfies a constant specific entropy condition. We propose to use this entropy relation as distance indicator for clusters.Comment: 5 pages, 3 figures, submitted to MNRAS Letter

    An XMM-Newton view of the cluster of galaxies Abell 85

    Full text link
    We have observed the cluster of galaxies Abell 85 with XMM-Newton. These data have allowed us to confirm in a previous paper the existence of the extended 4 Mpc filament detected by the ROSAT PSPC in the neighbourhood of this cluster, and to determine an X-ray temperature of about about 2 keV. We now present a thorough analysis of the properties of the X-ray gas in the cluster itself, including temperature and metallicity maps for the entire cluster. These results show that Abell 85 had intense merging activity in the past and is not fully relaxed, even in the central region. We have also determined the individual abundances for some iron-group metals and alpha-elements in various regions; the ratios of these metallicities to the iron abundance show that both supernova types Ia and II must be involved in the intra-cluster gas enrichment. Spectral analysis of the central region suggests a different redshift of the X-ray emitting gas compared to the mean cluster velocity derived from galaxy member redshifts. We discuss the implications of the difference between the cD galaxy redshift, the mean galaxy redshift and the hot gas redshift, as well as the possibility of several groups being accreted on to Abell 85. Finally, we obtain the dynamical mass profile and baryon fraction taking into account the new determined temperature profile. The dynamical mass in Abell 85 has a steep density profile, similar to the ones found in N-body simulations.Comment: Accepted for publication in Astronomy & Astrophysic

    Process Considerations for the Asymmetric Synthesis of Chiral Amines using ω-Transaminase

    Get PDF
    corecore