981 research outputs found

    Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser

    Get PDF
    This study aimed to investigate phosphate removal from aqueous effluents by an inorganic sludge from the inert part of construction and demolition wastes (CSW) as adsorbent. It is also discussed the application of the loaded P adsorbent as potential fertiliser. The CSW was also thermally treated at 800¿°C for 2¿h (CSW-T), and its influence in the P removal was also investigated. The characterisation techniques highlighted low porosity on CSW and CSW-T adsorbents and that they are mainly formed by oxides which could enhance the P uptake and recovery. In pH experiments, P adsorption increased as initial pH increased, at pH higher than 7.8 the P removal sharply increased due to the formation of calcium phosphate precipitate. The mechanism of the P adsorption onto CSW indicated that the process was mainly controlled by chemical bonding or chemisorption. The results showed that CSW-T was more effective for P removal in comparison to CSW based on the Liu isotherm, the maximum sorption capacity attained was 24.04 (CSW) and 57.64¿mg¿g-1 (CSW-T). Based on the Avrami’s kinetic models, the time for attaining 95% of saturation was 212.6 (CSW), and 136.6¿min (CSW-T). CSW and CSW-T showed the highest phosphate-removal performance among many adsorbents found in the literature; therefore, this kind of waste can be used widely as an inexpensive phosphate-recovery adsorbent. Besides, the P loaded adsorbents could be used as potential fertilisers which could be an interesting and efficient way of reuse for this waste.Peer ReviewedPostprint (published version

    Bound states in the dynamics of a dipole in the presence of a conical defect

    Full text link
    In this work we investigate the quantum dynamics of an electric dipole in a (2+1)(2+1)-dimensional conical spacetime. For specific conditions, the Schr\"odinger equation is solved and bound states are found with the energy spectrum and eigenfunctions determined. We find that the bound states spectrum extends from minus infinity to zero with a point of accumulation at zero. This unphysical result is fixed when a finite radius for the defect is introduced.Comment: 4 page

    The morita-baylis-hillman reaction: advances and contributions from brazilian chemistry

    Get PDF
    The Morita-Baylis-Hillman reaction is an organocatalyzed chemical transformation that allows access to small poly-functionalized molecules and has considerable synthetic potential and promising biological profiles. In this review, we report the efforts made by Brazilian research groups in recent years on the development of Morita-Baylis-Hillman chemistry. The review covers these contributions, with a focus on mechanistic studies, improvement of the experimental conditions, and the use of Morita-Baylis-Hillman adducts as building blocks for the synthesis of heterocycles, natural products and drugs126830852CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação2013/10449-5; 2013/07600-5; 2012/08048-

    Coupling of attrition and accelerated carbonation for CO2 sequestration in recycled concrete aggregates

    Get PDF
    Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Induction of pyroptotic cell death as a potential tool for cancer treatment

    Get PDF
    Cancer is a complex pathological disease and the existing strategies for introducing chemotherapeutic agents have restricted potential due to a lack of cancer cell targeting specificity, cytotoxicity, bioavailability, and induction of multi-drug resistance. As a prospective strategy in tackling cancer, regulating the inflammatory pyroptosis cell death pathway has been shown to successfully inhibit the proliferation and metastasis of various cancer cell types. Activation of inflammasomes such as the NLRP3 results in pyroptosis through cleavage of gasdermins, which forms pores in the cell membranes, inducing membrane breakage, cell rupture, and death. Furthermore, pyroptotic cells release pro-inflammatory cytokines such as IL-1β and IL-18 along with various DAMPs that prime an auxiliary anti-tumor immune response. Thus, regulation of pyroptosis in cancer cells is a way to enhance their immunogenicity. However, immune escape involving myeloid-derived suppressor cells has limited the efficacy of most pyroptosis-based immunotherapy strategies. In this review, we comprehensively summarize the cellular and molecular mechanisms involved in the inflammasome-mediated pyroptosis pathways in cancer cells, exploring how it could modulate the tumor microenvironment and be beneficial in anti-cancer treatments. We discuss various existing therapeutic strategies against cancer, including immunotherapy, oncolytic virus therapy, and nanoparticle-based therapies that could be guided to trigger and regulate pyroptosis cell death in cancer cells, and reduce tumor growth and spread. These pyroptosis-based cancer therapies may open up fresh avenues for targeted cancer therapy approaches in the future and their translation into the clinic

    Ultrastructure of the lung in a murine model of malaria-associated acute lung injury/acute respiratory distress syndrome

    Get PDF
    Background: the mechanisms through which infection with Plasmodium spp. result in lung disease are largely unknown. Recently a number of mouse models have been developed to research malaria-associated lung injury but no detailed ultrastructure studies of the disease in its terminal stages in a murine model have yet been published. the goal was to perform an ultrastructural analysis of the lungs of mice that died with malaria-associated acute lung injury/acute respiratory distress syndrome to better determine the relevancy of the murine models and investigate the mechanism of disease.Methods: DBA/2 mice were infected with Plasmodium berghei strain ANKA. Mice had their lungs removed immediately after death, processed using standard methods and viewed by transmission electron microscopy (TEM).Results: Infected red blood cell: endothelium contact, swollen endothelium with distended cytoplasmic extensions and thickening of endothelium basement membrane were observed. Septa were thick and filled with congested capillaries and leukocytes and the alveolar spaces contained blood cells, oedema and cell debris.Conclusion: Results show that the lung ultrastructure of P. berghei ANKA-infected mice has similar features to what has been described in post-mortem TEM studies of lungs from individuals infected with Plasmodium falciparum. These data support the use of murine models to study malaria-associated acute lung injury.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Dept Immunol, São Paulo, BrazilUniv São Paulo, Fac Med, Lab Med Invest 59, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Phys & Earth Sci, Diadema, BrazilUniv São Paulo, Dept Parasitol, São Paulo, BrazilUniv São Paulo, Fac Pharmaceut Sci, Dept Clin & Toxicol Anal, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Phys & Earth Sci, Diadema, BrazilFAPESP: 2009/53256-7FAPESP: 2009/53889-0CNPq: 306668/2012-2FAPESP: 2011/195252-0Web of Scienc

    Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive

    Get PDF
    Green routes to prepare or manufacture sustainable building materials have been attracting much attention over the years targeting sustainability issues. In this investigation, for the first time, sludge from the inert mineral part of the construction and demolition waste (RA-S) is used as a primary raw material in the fabrication of fired bricks for building purposes. Fired bricks fabricated with different dosages of RA-S and earth material (i.e., 0%, 30%, 50%, 70%, and 100% by weight) were prepared and evaluated in terms of their physical-chemical properties. The RA-S was characterized, and the results showed that it could be classified as a clayey material and richly graded silty sand according to the French Standards. XRD analysis revealed that the addition of the RA sludge into raw earth material provoked changes slightly in the fired bricks. The compressive strength (CS) results indicated that the CS of the fired bricks increased with the addition of the RA-S from 30% to 70%. The highest CS was attained at the firing temperature of 800 °C. The density of the fired brick slightly reduced with the RA-S addition. The thermal conductivity results suggest that RA-S has better insulation properties compared to earth material. The RA-S sludge can be used in combination with earth material to fabricate fired bricks, which can meet the requirements of many Standards all over the World. In the light of these results, it is possible to say that the RA-S generated from recycling inert mineral part of construction and demolition waste plant is an excellent raw material to prepare efficient fired bricks that can be successfully employed in the real construction sector. Also, the highlighted results suggest that brickwork factories have the opportunity to improve production quality while significantly reducing manufacturing time, energy consumption, resource depletion, and environmental impact.The authors are also grateful to the Council for the Development of Higher Education at Graduate Level, Brazil (CAPES) for the postdoctoral scholarship granted through the National Postdoctoral Program (PNPD). The authors also thank Mr. Ferro, president of Esterel Terassement, for financial support and for providing the RA-S samples. Dr. Simoes dos Reis gives a special thanks to the cooperation opportunity between UFRGS and IFSTTAR through his Post-doctoral studies provided by PNPD. E.C. Lima thanks to Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS), and National Council for Scientific and Technological Development (CNPq, Brazil) for financial support and sponsorship.Peer ReviewedPostprint (author's final draft
    corecore