1,091 research outputs found

    Amnion Epithelial Cells as a Candidate Therapy for Acute and Chronic Lung Injury

    Get PDF
    Acute and chronic lung injury represents a major and growing global burden of disease. For many of these lung diseases, the damage is irreparable, exhausting the host's ability to regenerate new lung, and current therapies are simply supportive rather than restorative. Cell-based therapies offer the promise of tissue regeneration for many organs. In this paper, we examine the potential application of amnion epithelial cells, derived from the term placenta, to lung regeneration. We discuss their unique properties of plasticity and immunomodulation, reviewing the experimental evidence that amnion epithelial cells can prevent and repair lung injury, offering the potential to be applied to both neonatal, childhood, and adult lung disease. It is amazing to suggest that the placenta may offer renewed life after birth as well as securing new life before

    A BLUEPRINT FOR RESEARCH-LED TEACHING ENGINEERING AT SCHOOLS: A CASE STUDY FOR TAYLOR’S UNIVERSITY

    Get PDF
    Although it is expected that research conducted at universities and institutions of higher learning will have some positive impact on the teaching quality, the literature seem to point in another direction. Available literature reports zero correlation between teaching and research. However, this need not be the case and a number of recommendations to create a positive correlation between teaching and research are proposed. This paper outlines a framework that utilises the Grand Challenges for Engineering and CDIO to create a clear link between teaching and research in Taylor’s School of Engineering. Aligning the academic staff research objectives to the Grand Challenges, creates a sense of purpose that extends beyond the academic staff to their students. Ensuring that students’ projects and other CDIO activities are derived from the academic staff research interests help creates a learning environment in which research and teaching are integrated. This integration is highly desirable as it benefits both the students and the academic staff

    Preliminary Characterization of Voltage-Activated Whole-Cell Currents in Developing Human Vestibular Hair Cells and Calyx Afferent Terminals

    Get PDF
    We present preliminary functional data from human vestibular hair cells and primary afferent calyx terminals during fetal development. Whole-cell recordings were obtained from hair cells or calyx terminals in semi-intact cristae prepared from human fetuses aged between 11 and 18 weeks gestation (WG). During early fetal development (11–14 WG), hair cells expressed whole-cell conductances that were qualitatively similar but quantitatively smaller than those observed previously in mature rodent type II hair cells. As development progressed (15–18 WG), peak outward conductances increased in putative type II hair cells but did not reach amplitudes observed in adult human hair cells. Type I hair cells express a specific low-voltage activating conductance, G(K,L). A similar current was first observed at 15 WG but remained relatively small, even at 18 WG. The presence of a “collapsing” tail current indicates a maturing type I hair cell phenotype and suggests the presence of a surrounding calyx afferent terminal. We were also able to record from calyx afferent terminals in 15–18 WG cristae. In voltage clamp, these terminals exhibited fast inactivating inward as well as slower outward conductances, and in current clamp, discharged a single action potential during depolarizing steps. Together, these data suggest the major functional characteristics of type I and type II hair cells and calyx terminals are present by 18 WG. Our study also describes a new preparation for the functional investigation of key events that occur during maturation of human vestibular organs

    Heterogeneous Responses to Antioxidants in Noradrenergic Neurons of the Locus Coeruleus Indicate Differing Susceptibility to Free Radical Content

    Get PDF
    The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca2+ concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca2+-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies

    Heterogeneous Responses to Antioxidants in Noradrenergic Neurons of the Locus Coeruleus Indicate Differing Susceptibility to Free Radical Content

    Get PDF
    The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca2+ concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca2+-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies

    Global sodium consumption and death from cardiovascular causes.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageHigh sodium intake increases blood pressure, a risk factor for cardiovascular disease, but the effects of sodium intake on global cardiovascular mortality are uncertain.We collected data from surveys on sodium intake as determined by urinary excretion and diet in persons from 66 countries (accounting for 74.1% of adults throughout the world), and we used these data to quantify the global consumption of sodium according to age, sex, and country. The effects of sodium on blood pressure, according to age, race, and the presence or absence of hypertension, were calculated from data in a new meta-analysis of 107 randomized interventions, and the effects of blood pressure on cardiovascular mortality, according to age, were calculated from a meta-analysis of cohorts. Cause-specific mortality was derived from the Global Burden of Disease Study 2010. Using comparative risk assessment, we estimated the cardiovascular effects of current sodium intake, as compared with a reference intake of 2.0 g of sodium per day, according to age, sex, and country.In 2010, the estimated mean level of global sodium consumption was 3.95 g per day, and regional mean levels ranged from 2.18 to 5.51 g per day. Globally, 1.65 million annual deaths from cardiovascular causes (95% uncertainty interval [confidence interval], 1.10 million to 2.22 million) were attributed to sodium intake above the reference level; 61.9% of these deaths occurred in men and 38.1% occurred in women. These deaths accounted for nearly 1 of every 10 deaths from cardiovascular causes (9.5%). Four of every 5 deaths (84.3%) occurred in low- and middle-income countries, and 2 of every 5 deaths (40.4%) were premature (before 70 years of age). The rate of death from cardiovascular causes associated with sodium intake above the reference level was highest in the country of Georgia and lowest in Kenya.In this modeling study, 1.65 million deaths from cardiovascular causes that occurred in 2010 were attributed to sodium consumption above a reference level of 2.0 g per day. (Funded by the Bill and Melinda Gates Foundation.).Bill and Melinda Gates Foundatio

    Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk : a systematic assessment of beverage intake in 187 countries

    Get PDF
    Background: Sugar-sweetened beverages (SSBs), fruit juice, and milk are components of diet of major public health interest. To-date, assessment of their global distributions and health impacts has been limited by insufficient comparable and reliable data by country, age, and sex. Objective: To quantify global, regional, and national levels of SSB, fruit juice, and milk intake by age and sex in adults over age 20 in 2010. Methods: We identified, obtained, and assessed data on intakes of these beverages in adults, by age and sex, from 193 nationally- or subnationally-representative diet surveys worldwide, representing over half the world’s population. We also extracted data relevant to milk, fruit juice, and SSB availability for 187 countries from annual food balance information collected by the United Nations Food and Agriculture Organization. We developed a hierarchical Bayesian model to account for measurement incomparability, study representativeness, and sampling and modeling uncertainty, and to combine and harmonize nationally representative dietary survey data and food availability data. Results: In 2010, global average intakes were 0.58 (95%UI: 0.37, 0.89) 8 oz servings/day for SSBs, 0.16 (0.10, 0.26) for fruit juice, and 0.57 (0.39, 0.83) for milk. There was significant heterogeneity in consumption of each beverage by region and age. Intakes of SSB were highest in the Caribbean (1.9 servings/day; 1.2, 3.0); fruit juice consumption was highest in Australia and New Zealand (0.66; 0.35, 1.13); and milk intake was highest in Central Latin America and parts of Europe (1.06; 0.68, 1.59). Intakes of all three beverages were lowest in East Asia and Oceania. Globally and within regions, SSB consumption was highest in younger adults; fruit juice consumption showed little relation with age; and milk intakes were highest in older adults. Conclusions: Our analysis highlights the enormous spectrum of beverage intakes worldwide, by country, age, and sex. These data are valuable for highlighting gaps in dietary surveillance, determining the impacts of these beverages on global health, and targeting dietary policy.peer-reviewe

    Identification of leukocyte surface P2X7 as a biomarker associated with Alzheimer\u27s disease

    Get PDF
    Alzheimer\u27s disease (AD) has shown altered immune responses in the periphery. We studied P2X7 (a proinflammatory receptor and a scavenger receptor) and two integrins, CD11b and CD11c, on the surface of circulating leukocytes and analysed their associations with Aβ-PET, brain atrophy, neuropsychological assessments, and cerebrospinal fluid (CSF) biomarkers. Total 287 age-matched, sex-balanced participants were recruited in a discovery cohort and two validation cohorts through the AIBL study and studied using tri-colour flow cytometry. Our results demonstrated reduced expressions of P2X7, CD11b, and CD11c on leukocytes, particularly monocytes, in Aβ +ve cases compared with Aβ -ve controls. P2X7 and integrin downregulation was observed at pre-clinical stage of AD and stayed low throughout disease course. We further constructed a polygenic risk score (PRS) model based on 12 P2RX7 risk alleles to assess the genetic impact on P2X7 function in AIBL and ADNI cohorts. No significant association was identified between the P2RX7 gene and AD, indicating that P2X7 downregulation in AD is likely caused by environmental changes rather than genetic factors. In conclusion, the downregulation of P2X7 and integrins at pre-clinical stage of AD indicates altered pro-inflammatory responses, phagocytic functions, and migrating capabilities of circulating monocytes in early AD pathogenesis. Our study not only improves our understanding of peripheral immune involvement in early stage of AD but also provides more insights into novel biomarker development, diagnosis, and prognosis of AD

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Organotypic Culture of Neonatal Murine Inner Ear Explants

    Get PDF
    The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol
    corecore