1,467 research outputs found

    Myricetin: A Naturally Occurring Regulator of Metal-Induced Amyloid-β Aggregation and Neurotoxicity

    Full text link
    No AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84385/1/1198_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/84385/2/cbic_201000790_sm_miscellaneous_information.pd

    Nickel(II) and Cobalt(II) Nitrate and Chloride Networks with 2-aminopyrimidine

    Get PDF
    The coordination chemistry of 2-aminopyrimidine (PymNH2) with nickel(II) and cobalt(II) nitrate and chloride is reported, including seven new X-ray crystal structures. Two [Ni(NO3)2(PymNH2)2(OH2)] isomers were found (A: C2/c, a=13.3006(5), b=7.9727(3), c=28.5453(11), β=101.758(2), V=2963.48(19), Z=8 and B·1/2 acetone: P21/c, a=7.66060(10), b=10.6792(2), c=20.6790(3), β=100.2970(10), 1664.48(5), Z=4). In both cases one nitrate is monodentate and the other is chelating and the PymNH2 ligands coordinate through ring nitrogen atoms. Hydrogen bonding results in double sheet structure for isomer A, and a three dimensional channeled network for isomer B. [Co(NO3)2(PymNH2)2(OH2)] (C2/c, a=13.3507(2), b=7.99520(10), c=28.6734(3), β=102.3540(10), V=2989.77(7), Z=8) is isostructural to Ni isomer A. [CoCl2(PymNH2)] (Cmcm, a=3.6139(2), b=14.3170(7), c=12.9986(7), V=672.55(6), Z=4) is a sheet coordination network, consisting of corner-sharing chains of Co2(μ-Cl)2 bridged by PymNH2 through ring nitrogen atoms; [CoCl2(PymNH2)2] (C2/c, a=11.2774(6), b=6.5947(4), c=16.5687(9), β=92.269(3), V=1231.27(12), Z=4) is a tetrahedral molecule knit into a ribbon structures through pairs of hydrogen bonds. Isostructural trans-[NiCl2(PymNH2)4] (C2/c, a=7.67760(10), b=18.7224(3), c=15.0418(2), β=99.6740(10), V=2131.41(5), Z=4) and trans-[CoCl2(PymNH2)4] (C2/c, a=7.69120(10), b=18.5957(2), c=15.1091(2), β=99.5280(10), V=2131.14(5), Z=4) are simple octahedral molecules, with hydrogen-bonding producing sheet structures

    Recent Development of Bifunctional Small Molecules to Study Metal-Amyloid-β Species in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease related to the deposition of aggregated amyloid-β (Aβ) peptides in the brain. It has been proposed that metal ion dyshomeostasis and miscompartmentalization contribute to AD progression, especially as metal ions (e.g., Cu(II) and Zn(II)) found in Aβ plaques of the diseased brain can bind to Aβ and be linked to aggregation and neurotoxicity. The role of metal ions in AD pathogenesis, however, is uncertain. To accelerate understanding in this area and contribute to therapeutic development, recent efforts to devise suitable chemical reagents that can target metal ions associated with Aβ have been made using rational structure-based design that combines two functions (metal chelation and Aβ interaction) in the same molecule. This paper presents bifunctional compounds developed by two different design strategies (linkage or incorporation) and discusses progress in their applications as chemical tools and/or potential therapeutics

    Oral microbiome correlates with selected clinical biomarkers in individuals with no significant systemic disease

    Get PDF
    The oral microbiome is an important component of the microbiome in the human body. Although the association of the oral microbiome with various diseases, including periodontitis and cancer, has been reported, information on how the oral microbiome is related to health-related indicators in healthy populations is still insufficient. In this study, we examined the associations of the oral microbiome with 15 metabolic and 19 complete blood count (CBC)-based markers in 692 healthy Korean individuals. The richness of the oral microbiome was associated with four CBC markers and one metabolic marker. Compositional variation in the oral microbiome was significantly explained by four markers: fasting glucose, fasting insulin, white blood cell count, and total leukocyte count. Furthermore, we found that these biomarkers were associated with the relative abundances of numerous microbial genera, such as Treponema, TG5, and Tannerella. By identifying the relationship between the oral microbiome and clinical biomarkers in a healthy population, our study presents a direction for future studies on oral microbiome-based diagnosis and interventions

    Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins.

    Get PDF
    Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3

    Deletion of the α subunit of the heterotrimeric Go protein impairs cerebellar cortical development in mice

    Get PDF
    Go is a member of the pertussis toxin-sensitive Gi/o family. Despite its abundance in the central nervous system, the precise role of Go remains largely unknown compared to other G proteins. In the present study, we explored the functions of Go in the developing cerebellar cortex by deleting its gene, Gnao. We performed a histological analysis with cerebellar sections of adult mice by cresyl violet- and immunostaining. Global deletion of Gnao induced cerebellar hypoplasia, reduced arborization of Purkinje cell dendrites, and atrophied Purkinje cell dendritic spines and the terminal boutons of climbing fibers from the inferior olivary nucleus. These results indicate that Go-mediated signaling pathway regulates maturation of presynaptic parallel fibers from granule cells and climbing fibers during the cerebellar cortical development.Fil: Cha, Hye Lim. Ajou University, School Of Medicine; Corea del SurFil: Choi, Jung Mi. Ajou University, School Of Medicine; Corea del SurFil: Oh, Huy Hyen. Ajou University, School Of Medicine; Corea del SurFil: Bashyal, Narayan. Ajou University, School Of Medicine; Corea del SurFil: Kim, Sung-Soo. Ajou University, School Of Medicine; Corea del SurFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Suh Kim, Haeyoung. Ajou University, School Of Medicine; Corea del Su

    Treatment of Fingertip Amputation in Adults by Palmar Pocketing of the Amputated Part

    Get PDF
    BackgroundFirst suggested by Brent in 1979, the pocket principle is an alternative method for patients for whom a microsurgical replantation is not feasible. We report the successful results of a modified palmar pocket method in adults.MethodsBetween 2004 and 2008, we treated 10 patients by nonmicrosurgical replantation using palmar pocketing. All patients were adults who sustained a complete fingertip amputation from the tip to lunula in a digits. In all of these patients, the amputation occurred due to a crush or avulsion-type injury, and a microsurgical replantation was not feasible. We used the palmar pocketing method following a composite graft in these patients and prepared the pocket in the subcutaneous layer of the ipsilateral palm.ResultsOf a total of 10 cases, nine had complete survival of the replantation and one had 20% partial necrosis. All of the cases were managed to conserve the fingernails, which led to acceptable cosmetic results.ConclusionsA composite graft and palmar pocketing in adult cases of fingertip injury constitute a simple, reliable operation for digital amputation extending from the tip to the lunula. These methods had satisfactory results

    Orthodontic bonding procedures significantly influence biofilm composition

    Get PDF
    Background Because changes in surface properties affect bacterial adhesion, orthodontic bonding procedures may significantly influence biofilm formation and composition around orthodontic appliances. However, most studies used a mono-species biofilm model under static conditions, which does not simulate the intraoral environment and complex interactions of oral microflora because the oral cavity is a diverse and changeable environment. In this study, a multi-species biofilm model was used under dynamic culture conditions to assess the effects of the orthodontic bonding procedure on biofilm formation and compositional changes in two main oral pathogens, Streptococcus mutans and Porphyromonas gingivalis. Methods Four specimens were prepared with bovine incisors and bonding adhesive: untreated enamel surface (BI), enamel surface etched with 37% phosphoric acid (ET), primed enamel surface after etching (PR), and adhesive surface (AD). Surface roughness (SR), surface wettability (SW), and surface texture were evaluated. A multi-species biofilm was developed on each surface and adhesion amounts of Streptococcus mutans, Porphyromonas gingivalis, and total bacteria were analyzed at day 1 and day 4 using real-time polymerase chain reaction. After determining the differences in biofilm formation, SR, and SW between the four surfaces, relationships between bacteria levels and surface properties were analyzed. Results The order of SR was AD < PR < BI < ET, as BI and ET showed more irregular surface texture than PR and AD. For SW, ET had the greatest value followed by PR, BI, and AD. S. mutans and P. gingivalis showed greater adhesion to BI and ET with rougher and more wettable surfaces than to AD with smoother and less wettable surfaces. The adhesion of total bacteria and S. mutans significantly increased over time, but the amount of P. gingivalis decreased. The adhesion amounts of all bacteria were positively correlated with SR and SW, irrespective of incubation time. Conclusions Within the limitations of this study, changes in SR and SW associated with orthodontic bonding had significant effects on biofilm formation and composition of S. mutans and P. gingivalis.This work was supported by the National Research Foundation of Korea [NRF-2017R1A2B4001834]
    corecore