497 research outputs found

    ASePCR: alternative splicing electronic RT–PCR in multiple tissues and organs

    Get PDF
    RT–PCR is one of the most powerful and direct methods to detect transcript variants due to alternative splicing (AS) that increase transcript diversity significantly in vertebrates. ASePCR is an efficient web-based application that emulates RT–PCR in various tissues. It estimates the amplicon size for a given primer pair based on the transcript models identified by the reverse e-PCR program of the NCBI. The tissue specificity of each PCR band is deduced from the tissue information of expressed sequence tag (EST) sequences compatible with each transcript structure. The output page shows PCR bands like a gel electrophoresis in various tissues. Each band in the output picture represents a putative isoform that could happen in a tissue-specific manner. It also shows the EST alignment and tissue information in the genome browser. Furthermore, the user can compare the AS patterns of orthologous genes in other species. The ASePCR, available at , supports the transcriptome models of the RefSeq, Ensembl, ECgene and AceView for human, mouse, rat and chicken genomes. It will be a valuable web resource to explore the transcriptome diversity associated with different tissues and organs in multiple species

    Gene expression profiling of chicken primordial germ cell ESTs

    Get PDF
    BACKGROUND: Germ cells are the only cell type that can penetrate from one generation to next generation. At the early embryonic developmental stages, germ cells originally stem from primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in female, after sexual maturity. This study was conducted to investigate a large-scale expressed sequence tag (EST) analysis in chicken PGCs and compare the expression of the PGC ESTs with that of embryonic gonad. RESULTS: We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC and embryonic gonad set showed no significance. However, digital gene expression profiling using the Audic's test showed that there were 2 genes expressed significantly with higher number of transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in embryonic gonads were up-regulated higher than those in the PGC set. CONCLUSION: Our results in this study contribute to knowledge of mining novel transcripts and genes involved in germline cell proliferation and differentiation at the early embryonic stages

    Erratum to: A genome-wide assessment of genetic diversity and population structure of Korean native cattle breeds

    Get PDF
    Background: The native cattle breeds are an important genetic resource for meat and milk production throughout Asia. In Asia cattle were domesticated around 10,000 years ago and in Korea cattle are being raised since 2000 B.C. There are three native breeds of cattle in Korea viz. Brown Hanwoo, Brindle Hanwoo and Jeju Black. While one of these breeds, Brown Hanwoo, is a part of a Food and Agricultural Organization and national genetic evaluation plans, others get little attention. This study is an effort to understand and provide a detailed insight into the population structure and genetic variability of the Korean cattle breeds along with other Asian breeds using various methods. In this study we report the genetic variation and structure of the Korean cattle breeds and their comparison with five other Asian cattle breeds along with a panel of animals from European taurine, African taurine and indicine cattle breeds. Results: Asian cattle were found to be least differentiated which reflects their recent history. Amongst the Asian breeds Hainan, which is an indicine breed, had the lowest gene diversity while Yanbian had the highest followed by Mongolian and Korean cattle. Amongst the Korean breeds Brown Hanwoo had the highest diversity followed by Brindle Hanwoo and Jeju Black. The genetic diversity in Asian cattle breeds was found comparable to the European taurines and more than the African taurines and Zebu cattle. Korean cattle breed, Brown Hanwoo was consistently found to be closer to Yanbian, a Chinese cattle breed. We found low divergence and moderate levels of genetic diversity among the native Korean breeds. Indicine introgression from Hainan was seen in other Asian breeds. From Europe, Limousin, Holstein and Hereford introgression was found in Asian breeds. Conclusions: In this study we provide a genome-wide insight into the genetic history of the native cattle breeds of Korea. The outcomes of this study will help in prioritization and designing of the conservation plans

    Analysis of abnormal muscle activities in patients with loss of cervical lordosis: a cross-sectional study

    Get PDF
    Background This study aimed to detect the differences in cervical muscle activation patterns in people with versus without cervical lordosis and explore the possible mechanism of cervical pain originating therein. Methods This cross-sectional design included 39 participants without and 18 with normal cervical lordosis. Muscular activation was measured for 5 s in both groups using surface electromyography. Subsequently, the root mean square (RMS) of muscle amplitude was obtained at the bilateral splenius capitis, upper and lower parts of the splenius cervicis, upper and lower parts of the semispinalis cervicis, sternocleidomastoid, upper trapezius, and rhomboid muscles in five cervical positions: 0° (resting), 30° of flexion, 30° of extension, 60° of extension, and upon a 1-kg load on the head in a resting posture. Results The RMS values of the upper trapezius muscle at all postures and the rhomboid muscles at 60° of extension were significantly lower in the loss of lordosis than control group. Comparing the RMS ratio of each posture to the resting position, the ratio of the upper trapezius at flexion was significantly higher and that of the rhomboids at 60° of extension and upon loading was significantly lower in the loss of lordosis than control group. Moreover, the pattern changes in the RMS values according to posture showed a similar shape in these two muscles, and lower in the loss of lordosis than the normal group. Conclusions The loss of normal cervical alignment may correlate with predisposed conditions such as reduced muscle activation of the trapezius and rhomboid muscle, and may also provoke over-firing of the upper trapezius muscle, possibly increasing neck musculoskeletal pain. Trial registration. Clinicaltrials.gov, registration number: NCT03710785.This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C1169

    Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip

    Get PDF
    Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which r2 value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average r2 between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on r2 varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts

    Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle

    Get PDF
    Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the ‘marbling score’ trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait

    The transcriptomic blueprint of molt in rooster using various tissues from Ginkkoridak (Korean long-tailed chicken)

    Get PDF
    Background Annual molt is a critical stage in the life cycle of birds. Although the most extensively documented aspects of molt are the renewing of plumage and the remodeling of the reproductive tract in laying hens, in chicken, molt deeply affects various tissues and physiological functions. However, with exception of the reproductive tract, the effect of molt on gene expression across the tissues known to be affected by molt has to date never been investigated. The present study aimed to decipher the transcriptomic effects of molt in Ginkkoridak, a Korean long-tailed chicken. Messenger RNA data available across 24 types of tissue samples (9 males) and a combination of mRNA and miRNA data on 10 males and 10 females blood were used. Results The impact of molt on gene expression and gene transcript usage appeared to vary substantially across tissues types in terms of histological entities or physiological functions particularly related to nervous system. Blood was the tissue most affected by molt in terms of differentially expressed genes in both sexes, closely followed by meninges, bone marrow and heart. The effect of molt in blood appeared to differ between males and females, with a more than fivefold difference in the number of down-regulated genes between both sexes. The blueprint of molt in roosters appeared to be specific to tissues or group of tissues, with relatively few genes replicating extensively across tissues, excepted for the spliceosome genes (U1, U4) and the ribosomal proteins (RPL21, RPL23). By integrating miRNA and mRNA data, when chickens molt, potential roles of miRNA were discovered such as regulation of neurogenesis, regulation of immunity and development of various organs. Furthermore, reliable candidate biomarkers of molt were found, which are related to cell dynamics, nervous system or immunity, processes or functions that have been shown to be extensively modulated in response to molt. Conclusions Our results provide a comprehensive description at the scale of the whole organism deciphering the effects of molt on the transcriptome in chicken. Also, the conclusion of this study can be used as a valuable resource in transcriptome analyses of chicken in the future and provide new insights related to molt.This work was funded by Population genomics of Korean long-tailed fowl the Program for Agriculture Science and Technology Development (Project No. PJ0133402) of the Rural Development Administration (RDA). The funding body had a role in sample collection

    Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue

    Get PDF
    BACKGROUND: Genome research in farm animals will expand our basic knowledge of the genetic control of complex traits, and the results will be applied in the livestock industry to improve meat quality and productivity, as well as to reduce the incidence of disease. A combination of quantitative trait locus mapping and microarray analysis is a useful approach to reduce the overall effort needed to identify genes associated with quantitative traits of interest. RESULTS: We constructed a full-length enriched cDNA library from porcine backfat tissue. The estimated average size of the cDNA inserts was 1.7 kb, and the cDNA fullness ratio was 70%. In total, we deposited 16,110 high-quality sequences in the dbEST division of GenBank (accession numbers: DT319652-DT335761). For all the expressed sequence tags (ESTs), approximately 10.9 Mb of porcine sequence were generated with an average length of 674 bp per EST (range: 200–952 bp). Clustering and assembly of these ESTs resulted in a total of 5,008 unique sequences with 1,776 contigs (35.46%) and 3,232 singleton (65.54%) ESTs. From a total of 5,008 unique sequences, 3,154 (62.98%) were similar to other sequences, and 1,854 (37.02%) were identified as having no hit or low identity (<95%) and 60% coverage in The Institute for Genomic Research (TIGR) gene index of Sus scrofa. Gene ontology (GO) annotation of unique sequences showed that approximately 31.7, 32.3, and 30.8% were assigned molecular function, biological process, and cellular component GO terms, respectively. A total of 1,854 putative novel transcripts resulted after comparison and filtering with the TIGR SsGI; these included a large percentage of singletons (80.64%) and a small proportion of contigs (13.36%). CONCLUSION: The sequence data generated in this study will provide valuable information for studying expression profiles using EST-based microarrays and assist in the condensation of current pig TCs into clusters representing longer stretches of cDNA sequences. The isolation of genes expressed in backfat tissue is the first step toward a better understanding of backfat tissue on a genomic basis

    Differential Gene Expression in Longissimus Dorsi Muscle of Hanwoo Steers-New Insight in Genes Involved in Marbling Development at Younger Ages

    Get PDF
    The Korean Hanwoo breed possesses a high capacity to accumulate intramuscular fat, which is measured as a marbling score in the beef industry. Unfortunately, the development of marbling is not completely understood and the identification of differentially expressed genes at an early age is required to better understand this trait. In this study, we took muscle samples from 12 Hanwoo steers at the age of 18 and 30 months. From the contrast between age and marbling score, we identified in total 1883 differentially expressed genes (FDR SLC38A4, ABCA10, APOL6, and two novel genes (ENSBTAG00000015330 and ENSBTAG00000046041) were up-regulated in the high marbling group. From the protein-protein interaction network analysis, we identified unique networks when comparing marbling scores between different ages. Nineteen genes (AGT, SERPINE1, ADORA1, FOS, LEP, FOXO1, FOXO3, ADIPOQ, ITGA1, SDC1, SDC4, ITGB3, ITGB4, CXCL10, ACTG2, MX1, EDN1, ACTA2, and ESPL1) were identified to have an important role in marbling development. Further analyses are needed to better understand the role of these genes
    corecore