1,516 research outputs found

    Investigations of flowfields found in typical combustor geometries

    Get PDF
    The flowfields of gas turbine combustion chambers were investigated. Six flowfield configurations with sidewall angles alpha = 90 and 45 deg. and swirl vane angles phi = 0, 45 and 70 deg. are characterized. Photography of neutrally-buoyant helium-filled soap bubbles, tufts, and injected smoke helps to characterize the time-mean streamlines, recirculation zones and regions of highly turbulent flow. Five-hole pitot probe pressure measurements allow the determination of time-mean velocities u, v and w. An advanced computer code equipped with a standard two-equation kappa-epsilon turbulence model was used to predict corresponding flow situations and to compare results with the experimental data

    DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism

    Full text link
    Inverted repeat (IR) sequences in DNA can form non-canonical cruciform structures to relieve torsional stress. We use Monte Carlo simulations of a recently developed coarse-grained model of DNA to demonstrate that the nucleation of a cruciform can proceed through a cooperative mechanism. Firstly, a twist-induced denaturation bubble must diffuse so that its midpoint is near the centre of symmetry of the IR sequence. Secondly, bubble fluctuations must be large enough to allow one of the arms to form a small number of hairpin bonds. Once the first arm is partially formed, the second arm can rapidly grow to a similar size. Because bubbles can twist back on themselves, they need considerably fewer bases to resolve torsional stress than the final cruciform state does. The initially stabilised cruciform therefore continues to grow, which typically proceeds synchronously, reminiscent of the S-type mechanism of cruciform formation. By using umbrella sampling techniques we calculate, for different temperatures and superhelical densities, the free energy as a function of the number of bonds in each cruciform along the correlated but non-synchronous nucleation pathways we observed in direct simulations.Comment: 12 pages main paper + 11 pages supplementary dat

    High-resolution genetic analysis reveals extensive gene flow within the jellyfish Pelagia noctiluca (Scyphozoa) in the North Atlantic and Mediterranean Sea

    Get PDF
    12 pages, 5 figures, 3 tables, supporting Information http://onlinelibrary.wiley.com/doi/10.1111/bij.12654/suppinfoDespite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little information is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; c. 21 Kya) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important speciesFergal Glynn’s PhD was funded by the Department of Agriculture and Rural Development, Northern Ireland (DARDNI). Martin Lilley was funded by l’Agence Nationale de la Recherche projects ‘Ecogely’ ANR-10-PDOC-005-01 and ‘NanoDeconGels’ ANR-12-EMMA-0008Peer Reviewe

    Large Scale Structures a Gradient Lines: the case of the Trkal Flow

    Full text link
    A specific asymptotic expansion at large Reynolds numbers (R)for the long wavelength perturbation of a non stationary anisotropic helical solution of the force less Navier-Stokes equations (Trkal solutions) is effectively constructed of the Beltrami type terms through multi scaling analysis. The asymptotic procedure is proved to be valid for one specific value of the scaling parameter,namely for the square root of the Reynolds number (R).As a result large scale structures arise as gradient lines of the energy determined by the initial conditions for two anisotropic Beltrami flows of the same helicity.The same intitial conditions determine the boundaries of the vortex-velocity tubes, containing both streamlines and vortex linesComment: 27 pages, 2 figure

    Keck Planet Imager and Characterizer (KPIC): status update

    Get PDF
    Here we report on the status of the The Keck Planet Imager and Characterizer (KPIC), which is an on-going series of upgrades to the W.M. Keck II adaptive optics system and instrument suite focused on exoplanet imaging and spectroscopic characterization. The KPIC infrared pyramid wavefront sensor and fiber injection unit to high-resolution infrared spectrograph NIRSPEC have been assembled, integrated and are under-going tests at the University of Hawaii before installation at the Summit in the Fall of 2018

    Dynamics of fluctuations in an optical analog of the Laval nozzle

    Full text link
    Using the analogy between the description of coherent light propagation in a medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and that of a dissipationless liquid we propose an optical analogue of the Laval nozzle. The optical Laval nozzle will allow one to form a transonic flow in which one can observe and study a very unusual dynamics of classical and quantum fluctuations including analogue of the Hawking radiation of real black holes. Theoretical analysis of this dynamics is supported by numerical calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure

    First version of the fiber injection unit for the Keck Planet Imager and Characterizer

    Get PDF
    Coupling a high-contrast imaging instrument to a high-resolution spectrograph has the potential to enable the most detailed characterization of exoplanet atmospheres, including spin measurements and Doppler mapping. The high-contrast imaging system serves as a spatial filter to separate the light from the star and the planet while the high-resolution spectrograph acts as a spectral filter, which differentiates between features in the stellar and planetary spectra. The Keck Planet Imager and Characterizer (KPIC) located downstream from the current W. M. Keck II adaptive optics (AO) system will contain a fiber injection unit (FIU) combining a high-contrast imaging system and a fiber feed to Keck’s high resolution infrared spectrograph NIRSPEC. Resolved thermal emission from known young giant exoplanets will be injected into a single-mode fiber linked to NIRSPEC, thereby allowing the spectral characterization of their atmospheres. Moreover, the resolution of NIRSPEC (R = 37,500 after upgrade) is high enough to enable spin measurements and Doppler imaging of atmospheric weather phenomenon. The module was integrated at Caltech and shipped to Hawaii at the beginning of 2018 and is currently undergoing characterization. Its transfer to Keck is planned in September and first on-sky tests sometime in December

    First version of the fiber injection unit for the Keck Planet Imager and Characterizer

    Get PDF
    Coupling a high-contrast imaging instrument to a high-resolution spectrograph has the potential to enable the most detailed characterization of exoplanet atmospheres, including spin measurements and Doppler mapping. The high-contrast imaging system serves as a spatial filter to separate the light from the star and the planet while the high-resolution spectrograph acts as a spectral filter, which differentiates between features in the stellar and planetary spectra. The Keck Planet Imager and Characterizer (KPIC) located downstream from the current W. M. Keck II adaptive optics (AO) system will contain a fiber injection unit (FIU) combining a high-contrast imaging system and a fiber feed to Keck’s high resolution infrared spectrograph NIRSPEC. Resolved thermal emission from known young giant exoplanets will be injected into a single-mode fiber linked to NIRSPEC, thereby allowing the spectral characterization of their atmospheres. Moreover, the resolution of NIRSPEC (R = 37,500 after upgrade) is high enough to enable spin measurements and Doppler imaging of atmospheric weather phenomenon. The module was integrated at Caltech and shipped to Hawaii at the beginning of 2018 and is currently undergoing characterization. Its transfer to Keck is planned in September and first on-sky tests sometime in December

    Antibody mediated neutralization of myelin associated EphrinB3 accelerates CNS remyelination

    Get PDF
    This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s00401-015-1521-1Remyelination in multiple sclerosis (MS) lesions often remains incomplete despite the presence of oligodendrocyte progenitor cells (OPCs). Amongst other factors, successful remyelination depends on the phagocytic clearance of myelin debris. However, the proteins in myelin debris that act as potent and selective inhibitors on OPC differentiation and inhibit CNS remyelination remain unknown. Here, we identify the transmembrane signalling protein EphrinB3 as important mediator of this inhibition, using a protein analytical approach in combination with a primary rodent OPC assay. In the presence of EphrinB3, OPCs fail to differentiate. In a rat model of remyelination, infusion of EphrinB3 inhibits remyelination. In contrast, masking EphrinB3 epitopes using antibodies promotes remyelination. Finally, we identify EphrinB3 in MS lesions and demonstrate that MS lesion extracts inhibit OPC differentiation while antibody-mediated masking of EphrinB3 epitopes promotes it. Our findings suggest that EphrinB3 could be a target for therapies aiming at promoting remyelination in demyelinating disease.This work was supported by the UK MS Society Grant ref: 941/11. MRNK held a NIHR Clinical Lectureship. KAN was supported by an ERC advanced award

    A fiber injection unit for the Keck Planet Imager and Characterizer (KPIC)

    Get PDF
    Coupling a high-contrast imaging instrument to a high-resolution spectrograph has the potential to enable the most detailed characterization of exoplanet atmospheres, including spin measurements and Doppler mapping. The high-contrast imaging system serves as a spatial filter to separate the light from the star and the planet while the high-resolution spectrograph acts as a spectral filter, which differentiates between features in the stellar and planetary spectra. The Keck Planet Imager and Characterizer (KPIC) located downstream from the current W. M. Keck II adaptive optics (AO) system will contain a fiber injection unit (FIU) combining a high-contrast imaging system and a fiber feed to Keck’s high resolution infrared spectrograph NIRSPEC. Resolved thermal emission from known young giant exoplanets will be injected into a single-mode fiber linked to NIRSPEC, thereby allowing the spectral characterization of their atmospheres. Moreover, the resolution of NIRSPEC (R = 37,500) is high enough to enable spin measurements and Doppler imaging of atmospheric weather phenomenon. The module will be integrated and tested at Caltech before being transferred to Keck in 2018
    • …
    corecore