1,157 research outputs found

    The magnetotelluric tensor: improved invariants for its decomposition, especially 'the 7th'

    Get PDF
    A decomposition of the magnetotelluric tensor is described in terms of quantities which are invariant to the rotation of observing axes, and which also are distinct measures of the 1D, 2D or 3D characteristics of the tensor and so may be useful in dimensionality analysis. When the in-phase and quadrature parts of the tensor are analysed separately there are two invariants which gauge 1D structure, two invariants which gauge 2D structure, and three invariants which gauge 3D structure. A matrix method similar to singular value decomposition is used to determine many of the invariants, and their display is then possible on Mohr diagrams. A particular set of invariants proposed some seventeen years ago is revised to yield an improved set. Several possibilities for the seventh invariant are canvassed, and illustrated by examples from field data. Low values of Δβ, the invariant now preferred for 'the 7th', may indicate a particular simplification of otherwise complicated three-dimensional structure

    The sign convention for quadrature Parkinson arrows in geomagnetic induction studies

    Get PDF
    Time series analysis, which is basic to modern geophysical data processing, involves a choice between working with a time dependence of e+iωt or e-iωt. In published work the choice made is sometimes not explicitly stated, leaving ambiguity in the interpretation of complex quantities with quadrature parts. Parkinson arrows are used in geomagnetic induction studies to summarize anomalous vertical magnetic fluctuations at different observing stations and to indicate regions of high electrical conductivity. Such arrows are now regularly computed as real and quadrature pairs. The general convention is often adopted of 'reversing' a calculated real arrow so that it will point toward a conductivity increase, but for quadrature arrows the practice between various published papers has generally not been so consistent. The present paper demonstrates that consistent practice for reversing or not reversing quadrature Parkinson arrows is possible when the initial convention for time dependence is taken into account. A reversal practice is determined for interpretation in terms of a simple channeling model. A related matter is the definition of phase. Phase values are also generally ambiguous unless the time dependence used (e-iωt or e+iωt) is stated

    On the interpretation of the distinctive pattern of geomagnetic induction observed in northwest India

    Get PDF
    The geomagnetic variation data from the 1979 Indian array experiment have been reanalyzed and reexamined using the hypothetical event analysis technique. The contour map of the |Z/H ratio replicates distinctive anomaly in northwest India previously delineated in maps of the Fourier coefficients. The anomaly reveals the presence of a significant conductor under the Ganga basin. The contour map has been used to derive a response profile perpendicular to the strike of the anomaly, for comparison with 2-D numerical models. An excellent fit was found for a conductor at a depth of 32 km, with a width of 110 km and a conductivity contrast of 1000. This result places the conductor deep within the lithosphere. In the absence of supporting data the origin of the conductor is difficult to resolve. However, it is thought to be related to pressure-released partial melting, caused by fracturing of the Indian crust during the collision of India with Asia

    Geomagnetic induction and conductive structures in north-west India

    Get PDF
    Magnetic disturbance events and quiet daily variation as recorded by the 1979 magnetometer array study in north-west India are analysed for evidence of electrical conductivity structures in the region. Contour maps of Fourier transform parameters are presented, and the disturbance event data are also reduced to sets of real and quadrature Parkinson arrows over a range of periods. A variety of conductive structures in the area are mapped, including some relatively shallow ones thought to be caused by sediments, as in the Ganga basin. More information is obtained on a major conductivity structure which strikes perpendicular to the Ganga basin into the foothills of the Himalayas; a second major conductivity structure is detected to lie to the west of the array area, and may be associated there with some aspect of the suture zone of India and Asia

    Quark Masses: An Environmental Impact Statement

    Full text link
    We investigate worlds that lie on a slice through the parameter space of the Standard Model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charges one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses and nuclear masses as functions of baryon masses. We check for the stability of nuclei against fission, strong particle emission, and weak nucleon emission. For two light quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV wide in their mass difference. We also find another, less robust region of congeniality with one light, charge -1/3 quark, and two heavier, approximately degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark charges yields congenial worlds with two baryons participating in nuclei. We identify and discuss the region in quark-mass space where nuclei would be made from three or more baryon species.Comment: 40 pages, 16 figures (in color), 4 tables. See paper for a more detailed abstract. v4: Cleaning up minor typo

    DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism

    Full text link
    Inverted repeat (IR) sequences in DNA can form non-canonical cruciform structures to relieve torsional stress. We use Monte Carlo simulations of a recently developed coarse-grained model of DNA to demonstrate that the nucleation of a cruciform can proceed through a cooperative mechanism. Firstly, a twist-induced denaturation bubble must diffuse so that its midpoint is near the centre of symmetry of the IR sequence. Secondly, bubble fluctuations must be large enough to allow one of the arms to form a small number of hairpin bonds. Once the first arm is partially formed, the second arm can rapidly grow to a similar size. Because bubbles can twist back on themselves, they need considerably fewer bases to resolve torsional stress than the final cruciform state does. The initially stabilised cruciform therefore continues to grow, which typically proceeds synchronously, reminiscent of the S-type mechanism of cruciform formation. By using umbrella sampling techniques we calculate, for different temperatures and superhelical densities, the free energy as a function of the number of bonds in each cruciform along the correlated but non-synchronous nucleation pathways we observed in direct simulations.Comment: 12 pages main paper + 11 pages supplementary dat

    A feasibility study of hyoscine butylbromide (buscopan) to improve image quality of cone beam computed tomography during abdominal/pelvic Stereotactic Ablative Radiotherapy.

    Get PDF
    Objectives: Cone beam computed tomography (CBCT) is used for image guidance of stereotactic ablative radiotherapy (SABR), but it is susceptible to bowel motion artefacts. This trial evaluated the impact of hyoscine butylbromide (buscopan) on CBCT image quality and its feasibility within a radiotherapy workflow. Methods: A single-centre feasibility trial (ISRCTN24362767) was performed in patients treated with SABR for abdominal/pelvic oligorecurrence. Buscopan was administered to separate cohorts by intramuscular (IM) or intravenous (i.v.) injection on alternate fractions, providing within-patient control data. 4-point Likert scales were used to assess overall image quality (ranging from excellent to impossible to use) and bowel motion artefact (ranging from none to severe). Feasibility was determined by patient/radiographer questionnaires and toxicity assessment. Descriptive statistics are presented. Results: 16 patients were treated (8 by IM and 8 by i.v. buscopan). The percentage of images of excellent quality with/without buscopan was 47 vs 29% for IM buscopan and 65 vs 40% for i.v. buscopan. The percentage of images with no bowel motion artefact with/without buscopan was 24.6 vs 8.9% for IM buscopan and 25.8 vs 7% for i.v. buscopan. Four patients (25%) reported dry mouth. 14 patients (93%) would accept buscopan as routine. 11 radiographers (92%) reported no delay in treatments. Conclusions: A trend towards improved image quality/reduced bowel motion artefact was observed with IM/i.v. buscopan. Buscopan was well tolerated with limited impact on workflow. Advances in knowledge: This is the first trial of buscopan within a radiotherapy workflow. It demonstrated a trend to improved image quality and feasibility of use

    Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavor Segment, Juan de Fuca Ridge

    Get PDF
    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2− oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall
    • …
    corecore