4 research outputs found

    Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting

    Get PDF
    PCR of TCR/Ig gene rearrangements is considered the method of choice for minimal residual disease (MRD) quantification in BCP-ALL, but flow cytometry analysis of leukemia-associated immunophenotypes (FCM-MRD) is faster and biologically more informative. FCM-MRD performed in 18 laboratories across seven countries was used for risk stratification of 1487 patients with BCP-ALL enrolled in the NOPHO ALL2008 protocol. When no informative FCM-marker was available, risk stratification was based on real-time quantitative PCR. An informative FCM-marker was found in 96.2% and only two patients (0.14%) had non-informative FCM and non-informative PCR-markers. The overall 5-year event-free survival was 86.1% with a cumulative incidence of relapse (CIR5y) of 9.5%. FCM-MRD levels on days 15 (HzR 4.0, p 10(-4) associated with a CIR5y = 22.1%. In conclusion, FCM-MRD performed in a multicenter setting is a clinically useful method for MRD-based treatment stratification in BCP-ALL.Peer reviewe

    BRCA1 mutations in women with familial or early-onset breast cancer and BRCA2 mutations in familial cancer in Estonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify BRCA1 and BRCA2 mutations in the Estonian population. We analyzed genetic data and questionnaire from 64 early-onset (< 45 y) breast cancer patients, 47 familial cases (patients with breast or ovarian cancer and a case of these cancers in the family), and 33 predictive cases (patients without breast or ovarian cancer, with a family history of such diseases) from Estonia for mutations in the BRCA1 gene. A sub-set of familial cases and predictive cases were also analyzed for mutations in the BRCA2 gene.</p> <p>Methods</p> <p>For mutation detection, we used the Polymerase Chain Reaction-Single Stranded Conformation Polymorphism Heteroduplex Analysis (PCR-SSCP-HD), followed by direct DNA sequencing.</p> <p>Results</p> <p>We identified three clinically important mutations in the BRCA1 gene, including seven occurrences of the c.5382insC mutation, three of c.4154delA, and one instance of c.3881_3882delGA. We also detected six polymorphisms: c.2430T>C, c.3232A>G, c.4158A>G, c.4427T>C, c.4956A>G, and c.5002T>C. Four sequence alterations were detected in introns: c.560+64delT, c.560+ [36-38delCTT, 52-63del12], c.666-58delT, and c.5396+60insGTATTCCACTCC. In the BRCA2 gene, two clinically important mutations were found: c.9610C>T and c.6631delTTAAATG. Additionally, two alterations (c.7049G>T and c.7069+80delTTAG) with unknown clinical significance were detected.</p> <p>Conclusions</p> <p>In our dataset, the overall frequency of clinically important BRCA1 mutations in early-onset patients, familial cases, and predictive testing was 7.6% (144 cases, 11 mutation carriers). Pathogenic mutations were identified in 4 of the 64 early-onset breast cancer cases (6.3%). In familial cases, clinically important mutations in the BRCA1 gene were found in 6 of the 47 individuals analyzed (12.8%). In predictive cases, 1 clinically important mutation was detected in 33 individuals studied (3%). The occurrence of clinically important mutations in BRCA2 in familial cases of breast cancer was 2 of the 16 individuals analyzed (12.5%).</p

    Minimal residual disease quantification by flow cytometry provides reliable risk stratification in T-cell acute lymphoblastic leukemia.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowMinimal residual disease (MRD) measured by PCR of clonal IgH/TCR rearrangements predicts relapse in T-cell acute lymphoblastic leukemia (T-ALL) and serves as risk stratification tool. Since 10% of patients have no suitable PCR-marker, we evaluated flowcytometry (FCM)-based MRD for risk stratification. We included 274 T-ALL patients treated in the NOPHO-ALL2008 protocol. MRD was measured by six-color FCM and real-time quantitative PCR. Day 29 PCR-MRD (cut-off 10-3) was used for risk stratification. At diagnosis, 93% had an FCM-marker for MRD monitoring, 84% a PCR-marker, and 99.3% (272/274) had a marker when combining the two. Adjusted for age and WBC, the hazard ratio for relapse was 3.55 (95% CI 1.4-9.0, p = 0.008) for day 29 FCM-MRD ≥ 10-3 and 5.6 (95% CI 2.0-16, p = 0.001) for PCR-MRD ≥ 10-3 compared with MRD < 10-3. Patients stratified to intermediate-risk therapy on day 29 with MRD 10-4-<10-3 had a 5-year event-free survival similar to intermediate-risk patients with MRD < 10-4 or undetectable, regardless of method for monitoring. Patients with day 15 FCM-MRD < 10-4 had a cumulative incidence of relapse of 2.3% (95% CI 0-6.8, n = 59). Thus, FCM-MRD allows early identification of patients eligible for reduced intensity therapy, but this needs further studies. In conclusion, FCM-MRD provides reliable risk prediction for T-ALL and can be used for stratification when no PCR-marker is available
    corecore