26 research outputs found

    Establishing causal links between aquatic biodiversity and ecosystem functioning: status and research needs

    Get PDF
    Understanding how changes in biodiversity affects ecosystem functioning is imperative in allowing Ecosystem-Based Management (EBM), especially when addressing global change and environmental degradation. Research into the link between biodiversity and ecosystem functioning (BEF) has indeed increased considerably over the past decades. BEF research has focussed on terrestrial ecosystems and aquatic ecosystems have received considerably less attention. Due to differences in phylogenetic diversity, ecological processes and reported BEF relationships, however, it may at least be questionable whether BEF relationships are exchangeable between these ecosystems (i.e. terrestrial and aquatic). The aim of the present paper was therefore to pinpoint key areas and bottlenecks in establishing BEF relationships for aquatic ecosystems (freshwater, transitional, and marine). To this end, the available literature with special emphasis on the last 10 years was assessed to evaluate: i) reported mechanisms and shapes of aquatic BEF relationships; ii) to what extent BEF relations are interchangeable or ecosystem-specific; and iii) contemporary gaps and needs in aquatic BEF research. Based on our analysis, it may be concluded that despite considerable progress in BEF research over the past decades, several bottlenecks still need to be tackled, namely incorporating the multitude of functions supported by ecosystems, functional distinctiveness of rare species, multitrophic interactions and spatial-temporal scales, before BEF relationships can be used in ecosystem-based management.publishe

    Flagging greens: hydrobiid snails as substrata for the development of green algal mats (Enteromorpha spp.) on tidal flats of North Atlantic coasts

    Get PDF
    During the past 3 decades, dense mats of green algae (especially Enteromorpha spp.) have been recorded regularly from tidal flats worldwide. The development of green algal mats on tidal flats may be initiated by overwintering and regrowth of adult plants or by the formation and release of small propagules, i.e. vegetative fragments, zoospores and zygotes. On soft sediments, macroinvertebrates may constitute prime substrata for germination of algal spores. Hydrobud (mud-) snails are widespread along North Atlantic soft sediment shores and were identified previously as important substrata for Enteromorpha spp. germlings in 1 of our study areas. To test the generality of this phenomenon, we investigated the presence of Enteromorpha spp. gerrnlings attached to hydrobud snails from November 1995 to December 1996 on 6 tidal flats of North Atlantic coasts (Tralebergslule, Sweden; Konigshafen Bay, Germany; Mondego Estuary, Portugal; Ria Formosa, Portugal; Cole Harbour, Nova Scotia, Canada; Lowes Cove, Maine, USA). With 1 exception, hydrobiid snails were present in all areas studied, and intensive growth of Enteromorpha spp. occurred during summer. Throughout winter 1995/96, hardly any Enteromorpha spp. gerrnlings were found on snail shells, but over the following months germlings developed on up to 60% of the hydrobiid snails present. In 2 areas (Konigshafen, Germany; Lowes Cove, USA), germhng abundance on hydrobuds began to rise before the peak of green algal mat development. In Tralebergskile, Sweden, high mat abundance occurred simultaneous to and after increased germling abundance on Hydrobia ulvae. Densities of snails were very low, however, and hydrobuds appeared to be unimportant as substratum. No clear temporal pattern between high germling abundance on snails followed by mat development was found in the other 3 study areas (Ria Formosa, Portugal; Mondego Estuary, Portugal; Cole Harbour, Canada). In Lowes Cove, USA, gerrnlings and juveniles of Enteromorpha spp. first grew at the site with high Hydrobia abundance and were subsequently drifted to another site where they developed into full mats. We conclude that initiation of green algal mats by germination on Hydrobia spp. may be a general phenomenon, but that other modes of development also occur frequently. Pelagic dnft of overwintering thalli to new sites, followed by prolific growth, might be of similar or greater importance

    Beliefs on the local effects of climate change: causal attribution of flooding and shoreline retreat

    Get PDF
    Adaptation to climate change is a process that should engage different participants, including not only researchers and technicians but also other stakeholders and local individuals, and, therefore, it is important to understand their beliefs on the local effects of climate change. Recent studies illustrate a linear relation between coastal distance and scepticism, which is lower in coastal zones than in inland. A possible explanation is that people living inland do not experience (or do not perceive) particular natural hazards as being caused by climate change, or attribute the natural hazards to other causes, apart from climate change. This might influence the relative importance of dealing with direct anthropogenic effects and planning adaptation to climate change. Therefore, the goal of this work was to explore this effect by comparing beliefs on the local effects of climate change in Aveiro region (Portugal), specifically in Baixo Vouga Lagunar (BVL, located in the inner side of Ria de Aveiro Coastal Lagoon, 10 km distance from the coast) with the nearby coastal zone between Esmoriz and Vagueira settlements. Stakeholders were interviewed and local individuals were surveyed in order to explore causal attributions towards relevant local environmental problems and compare with data available from the coastal zone. Natural hazards concerned flooding in BVL and shoreline retreat in the coastal zone. Results suggest that in BVL both stakeholders and local residents did not attribute local natural hazards mostly to climate change. However, in the coastal zone, local natural hazards were indeed mostly attributed to climate change. This attribution to climate change was further correlated to a higher risk perception of natural hazards in the coastal zone but not in BVL. Thereby, it is important to consider distance from the shoreline in order to promote local processes of adaptation to climate change.info:eu-repo/semantics/publishedVersio

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    open263siWe acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA(GrantNo.2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232)Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.openKwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y.Kwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y

    Modeling the effect of temperature, solar radiation and salinity on Bolboschoenus maritimus sequestration of mercury

    No full text
    Some tidal wetland halophytes are extremely important for pollution control but due to global climate change, wetlands and their ecosystem services may suffer considerable modifications. In this context we modeled the growth and mercury (Hg) sequestration by Bolboschoenus maritimus on the most contaminated area of a temperate shallow coastal lagoon historically subjected to heavy Hg load, under gradients of climate driven variables. For calibration purposes we used field data on temperature, salinity, solar radiation, plant biomass, plant decomposition and mercury concentration in the plants. Ten different methods evaluated model performance. We then simulated B. maritimus mercury sequestration under different environmental scenarios involving increases and decreases in temperature, salinity and cloud cover. The largest effects were related to high salinity scenarios but all variables presented an inverse relation with Hg-sequestration. Our results point to a progressive decrease on Hg-sequestration until the end of the century

    Mercury cycling and sequestration in salt marshes sediments: an ecosystem service provided by Juncus maritimus and Scirpus maritimus

    No full text
    In this study two time scales were looked at: a yearlong study was completed, and a 180-day decay experiment was done. Juncus maritimus and Scirpus maritimus have different life cycles, and this seems to have implications in the Hg-contaminated salt marsh sediment chemical environment, namely Eh and pH. In addition, the belowground biomass decomposition rates were faster for J. maritimus, as well as the biomass turnover rates. Results show that all these species-specific factors have implications in the mercury dynamics and sequestration. Meaning that J. maritimus belowground biomass has a sequestration capacity for mercury per square metre approximately 4–5 times higher than S. maritimus, i.e., in S. maritimus colonized areas Hg is more extensively exchange between belowground biomass and the rhizosediment. In conclusion, J. maritimus seems to provide a comparatively higher ecosystem service through phytostabilization (Hg complexation in the rhizosediment) and through phytoaccumulation (Hg sequestration in the belowground biomass).The Portuguese Foundation for Science and Technology (FCT) supported this study through the project PTDC/MAR/67752/2006; FCOMP-01-0124-FEDER-007378. The authors thank Bruno Galinho Henriques for his assistance with laboratory analyses. FCT funding through CESAM (Centre for Environmental and Marine Studies) is also acknowledged.publishe

    Influence of multiple stressors on the auto-remediation processes occurring in salt marshes

    No full text
    Due to increasing global population, salt marshes have been subjected to multiple stressors such as increasing nutrient loadings and historical contamination. In order to better understand how does the salt marsh plants auto-remediation capacity (phytoaccumulation of metals) is affected by cultural eutrophication, an experiment was performed under controlled conditions. Plants were exposure to equal metal concentrations (Zn, Cu, and Ni – micronutrients, and Cd – class B metal) simulating historical contamination and three different concentrations of nitrogen (nitrate) simulating steps of cultural eutrophication. According to our study, under the tested concentrations, cultural eutrophication does not seem to affect Zn, Cu and Ni phytoremediation of H. portulacoides, but the ecosystem service of Cd phytoremediation seems to be promoted. Nevertheless, Cd high toxicity and bioaccumulation should be taken into account, as well as the vulnerability of salt marsh ecosystems, whose reduction will have drastic consequences to the ecosystem health

    Daily and inter-tidal variations of Fe, Mn and Hg in the water column of a contaminated salt marsh: Halophytes effect

    No full text
    It has been shown that salt marshes may function as efficient sinks for contaminants, namely for mercury. At the rhizo-sediment Hg may be associated with Mn and Fe oxyhydroxides, precipitated as sulphides or incorporated into organic matter. However, to our knowledge, in situ studies have not focused on the related processes at a daily or tidal cycle scales. Thus, the present work aims to study the effect of a common salt marsh halophyte in temperate latitudes (Sarcocornia perennis) on dissolved Fe, Mn and Hg concentrations in the water column. The in situ approach was carried out at a mercury-contaminated salt marsh and at the adjacent non-vegetated area (distance ≤ 4 m), covering two consecutive tidal cycles in order to include the photosynthetic active period and the night processes. During high tide no daily or spatial effects were observed on the concentrations of Mn, Fe and Hg in the water column, due to the dilution effect of the incoming seawater. During low tide the concentrations of Mn, Fe and Hg were significantly higher in the overlaying water column of the salt marsh. At S. perennis mats the concentration of dissolved total Hg was significantly related with the concentration of Mn (r = 0.459, p = 0.028, n = 23), but not with that of Fe (r = 0.367, p = 0.085, n = 23) while no significant relations were found at the adjacent non-vegetated sediments. This study highlights the complexity of the biogeochemical processes that take place in salt marshes, due to the daily photosynthetic cycle of halophytes and to the tidal action in mesotidal systems

    Different mercury bioaccumulation kinetics by two macrobenthic species: The bivalve Scrobicularia plana and the polychaete Hediste diversicolor

    No full text
    Mercury is a global priority pollutant and given its huge relevance in terms of environmental damage and a threat to human health, it is important to study the bioaccumulation processes at the level of macrobenthic organisms and evaluate possible consequences for the trophic chain. In this work we evaluate the mercury accumulation rates of two distinct and economically important macrobenthic species, the polychaete Hediste diversicolor and the bivalve Scrobicularia plana, through a mesocosms laboratory experiment. The present experiment demonstrated different bioaccumulation kinetics for each species: while S. plana has a rapid accumulation after 48 h of exposure to contaminated sediments and then reaches a steady state, H. diversicolor has a linear mercury accumulation throughout the experiment time (31 days). The different patterns observed can be related to different feeding strategies and assimilation efficiencies. In addition, we can conclude that independently of the mercury concentration in the sediments, the two studied species in both contaminated sediments reached the same percentage (25%) of mercury accumulated at the end of the experiment when compared to the maximum concentrations recorded in the field. This experiment highlights that the mercury bioaccumulation rate by these two economically and ecologically important macrobenthic species is a reasonably rapid process which can promote serious consequences for the higher trophic levels, constituting a severe risk to the natural environment and ultimately to human health
    corecore