54 research outputs found

    Rapid emergence of boscalid resistance in Swedish populations of Alternaria solani revealed by a combination of field and laboratory experiments

    Get PDF
    Early blight, caused by Alternaria solani, is a common potato disease worldwide. Reduced field efficacy of the fungicide boscalid against this disease has been reported in several countries. Boscalid resistance has been mostly studied with in-vitro and/or greenhouse experiments. Field studies validating this phenomenon are largely missing. Here, for the first time in Scandinavia, we validated boscalid resistance in a Swedish population of A. solani both in the field and in the laboratory. Field trials between 2014 and 2017 in Nymo showed significant efficacy reduction by year. The target regions of the A. solani genes encoding the succinate dehydrogenase subunits (Sdh) B, C and D of samples collected from Nymo, and additional fields in south-eastern and central Sweden, were analysed for substitutions associated with loss of boscalid sensitivity. In 2014, the SdhC-H134R mutation was found at several sites at a low frequency, while, in 2017, the majority of the samples had either the SdhB-H278Y or the SdhC-H134R substitution. No mutations were detected in the gene encoding the SdhD subunit. Spore germination tests showed a high sensitivity (EC50 100 mu g mL(-1) and their growth rates hardly decreased at concentrations above 1-10 mu g mL(-1). These results add to the current knowledge of fungicide resistance development in field and indicate that early blight management in southeast Sweden should no longer rely on boscalid

    Reduced efficacy of biocontrol agents and plant resistance inducers against potato early blight from greenhouse to field

    Get PDF
    Early blight in potato, caused by Alternaria solani, is mainly controlled by frequent applications of synthetic fungicides. Reducing the use of synthetic fungicides in agriculture is desired to reach an overall sustainable development since the active components can be harmful for humans and for the ecosystem. In integrated pest management, IPM, the idea is to combine various measures, including optimized crop management, crop rotation, use of resistant cultivars, biological control agents (BCAs), plant resistance inducers, and fertilizers, to decrease the dependence on traditional chemical fungicides. In this paper, we present the results from greenhouse and field trials where we evaluated the effect of strategies aimed at reducing our reliance on synthetic fungicides including treatments with biological control agents (BCAs) (Pythium oligandrum, Polygandron (R), and Bacillus subtilis, Serenade (R)) and plant resistance inducers (silicon products HortiStar (R) and Actisil (R)) for early blight in potato. The agents were applied separately or in combination with each other or with synthetic fungicides. In the greenhouse, trials application of these agents resulted in 50-95% reduction of infection by A. solani, but their combination did not generally improve the outcome. However, the effects were much smaller in the hand-sprayed field trials, 20-25% disease reduction and almost disappeared in full-scale field trials where application was done with tractor sprayers. In this article, we discuss possible reasons behind the drop in efficacy from greenhouse trials to full-size field evaluation

    Double trouble: Co-infection of potato with the causal agents of late and early blight

    Get PDF
    Global potato production is plagued by multiple pathogens, amongst which are Phytophthora infestans and Alternaria solani, the causal agents of potato late blight and early blight, respectively. Both these pathogens have different lifestyles and are successful pathogens of potato, but despite observations of both pathogens infecting potato simultaneously in field conditions, the tripartite interactions between potato and these two pathogens are so far poorly understood. Here we studied the interaction of A. solani and P. infestans first in vitro and subsequently in planta both in laboratory and field settings. We found that A. solani can inhibit P. infestans in terms of growth in vitro and also infection of potato in both laboratory experiments and in an agriculturally relevant field setting. A. solani had a direct inhibitory effect on P. infestans in vitro and compounds secreted by A. solani had both an inhibitory and disruptive effect on sporangia and mycelium of P. infestans in vitro. In planta infection bioassays revealed that simultaneous co-inoculation of both pathogens resulted in larger necrotic lesions than single inoculations; however, consecutive inoculations only resulted in larger lesions when A. solani was inoculated after P. infestans. These results indicate that the order in which these pathogens attempt to colonize potato is important for the disease outcome and that the influence of plant pathogens on each other should be accounted for in the design of future disease control strategies in crops such as potato

    Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning

    Get PDF
    The plant pathogen Phytophthora infestans causes the severe disease late blight in potato, which can result in huge yield loss for potato production. Automatic and accurate disease lesion segmentation enables fast evaluation of disease severity and assessment of disease progress. In tasks requiring computer vision, deep learning has recently gained tremendous success for image classification, object detection and semantic segmentation. To test whether we could extract late blight lesions from unstructured field environments based on high-resolution visual field images and deep learning algorithms, we collected∼500 field RGB images in a set of diverse potato genotypes with different disease severity (0%–70%), resulting in 2100 cropped images. 1600 of these cropped images were used as the dataset for training deep neural networks and 250 cropped images were randomly selected as the validation dataset. Finally, the developed model was tested on the remaining 250 cropped images. The results show that the values for intersection over union (IoU) of the classes background (leaf and soil) and disease lesion in the test dataset were 0.996 and 0.386, respectively. Furthermore, we established a linear relationship (R2=0.655) between manual visual scores of late blight and the number of lesions detected by deep learning at the canopy level. We also showed that imbalance weights of lesion and background classes improved segmentation performance, and that fused masks based on the majority voting of the multiple masks enhanced the correlation with the visual disease scores. This study demonstrates the feasibility of using deep learning algorithms for disease lesion segmentation and severity evaluation based on proximal imagery, which could aid breeding for crop resistance in field environments, and also benefit precision farming

    Challenges and opportunities for increasing the use of low-risk plant protection products in sustainable production. A review

    Get PDF
    Plant production systems worldwide are struggling to meet the diverse and increasing needs of humankind while also facing challenges such as climate change and biodiversity loss. This, combined with the desirable transition from the use of conventional pesticides to more sustainable plant protection solutions, has led to an urgent, and increasing, need for low-risk plant protection products (PPPs) to be developed, applied, and integrated into management practices across all types of plant production systems. Despite a high demand from end users and consumers together with joint political goals at the EU level to replace conventional pesticides, the number of low-risk PPPs on the European market remains low, in comparison to synthetic agrochemicals. In this review, we summarize knowledge about the policy, technical, and administrative issues hampering the process of bringing new low-risk PPPs to the European market. We present an overview of the challenges in using the low-risk PPPs that are currently available within the EU agricultural, horticultural, and forestry sectors. We describe the variation in modes of action and the limitations associated with different application techniques and give concrete examples of problems and solutions from Swedish plant production sectors, in contrast to global perspectives as demonstrated by examples from African agriculture. Finally, we conclude that trans-sectoral, multi-actor approaches are required and provide suggestions on how to address the remaining knowledge gaps related to efficiency, application, and economics of low-risk PPP use in Integrated Pest Management (IPM) solutions for plant protection to improve future food security in Europe

    Whole-genome sequencing elucidates the species-wide diversity and evolution of fungicide resistance in the early blight pathogen Alternaria solani

    Get PDF
    Early blight of potato is caused by the fungal pathogen Alternaria solani and is an increasing problem worldwide. The primary strategy to control the disease is applying fungicides such as succinate dehydrogenase inhibitors (SDHI). SDHI-resistant strains, showing reduced sensitivity to treatments, appeared in Germany in 2013, shortly after the introduction of SDHIs. Two primary mutations in the SDH complex (SdhB-H278Y and SdhC-H134R) have been frequently found throughout Europe. How these resistances arose and spread, and whether they are linked to other genomic features, remains unknown. For this project, we performed whole-genome sequencing for 48 A. solani isolates from potato fields across Europe to better characterize the pathogen's genetic diversity in general and understand the development and spread of the genetic mutations that lead to SDHI resistance. The isolates can be grouped into seven genotypes. These genotypes do not show a geographical pattern but appear spread throughout Europe. We found clear evidence for recombination on the genome, and the observed admixtures might indicate a higher adaptive potential of the fungus than previously thought. Yet, we cannot link the observed recombination events to different Sdh mutations. The same Sdh mutations appear in different, non-admixed genetic backgrounds; therefore, we conclude they arose independently. Our research gives insights into the genetic diversity of A. solani on a genome level. The mixed occurrence of different genotypes, apparent admixture in the populations, and evidence for recombination indicate higher genomic complexity than anticipated. The conclusion that SDHI tolerance arose multiple times independently has important implications for future fungicide resistance management strategies. These should not solely focus on preventing the spread of isolates between locations but also on limiting population size and the selective pressure posed by fungicides in a given field to avoid the rise of new mutations in other genetic backgrounds

    Identification of Colletotrichum species associated with anthracnose disease of coffee in Vietnam

    Get PDF
    Colletotrichum gloeosporioides, C. acutatum, C. capsici and C. boninense associated with anthracnose disease on coffee (Coffea spp.) in Vietnam were identified based on morphology and DNA analysis. Phylogenetic analysis of DNA sequences from the internal transcribed spacer region of nuclear rDNA and a portion of mitochondrial small subunit rRNA were concordant and allowed good separation of the taxa. We found several Colletotrichum isolates of unknown species and their taxonomic position remains unresolved. The majority of Vietnamese isolates belonged to C. gloeosporioides and they grouped together with the coffee berry disease (CBD) fungus, C. kahawae. However, C. kahawae could be distinguished from the Vietnamese C. gloeosporioides isolates based on ammonium tartrate utilization, growth rate and pathogenictity. C. gloeosporioides isolates were more pathogenic on detached green berries than isolates of the other species, i.e. C. acutatum, C capsici and C. boninense. Some of the C. gloeosporioides isolates produced slightly sunken lesion on green berries resembling CBD symptoms but it did not destroy the bean. We did not find any evidence of the presence of C. kahawae in Vietnam
    corecore