33 research outputs found

    The radiative transfer equations for Compton scattering of polarized low frequency radiation on a hot electron gas

    Get PDF
    We deduce the equations that describe how polarized radiation is Comptonized by a hot electron gas. Low frequencies are considered, and the equations are expanded to second order in electron velocities. Induced scattering terms are included and a Maxwellian velocity distribution for the electrons is assumed. The special case of an axisymmetric radiation field is also considered, and the corresponding radiative transfer equations are found. Our results correct errors and misprints in previosly published transfer equations. The extension to a moving electron gas is made, and the radiative transfer equations are deduced to second order in gas velocity. We use the equations to study polarization in the Sunyaev-Zeldovich effect.Comment: 9 pages, 2 figuers, MNRAS-LaTeX-style Submitted to the Monthly Notices of the Royal astronomical Societ

    Radio-optical alignments in a low radio luminosity sample

    Get PDF
    We present an optically-based study of the alignment between the radio axes and the optical major axes of eight z~0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are ~20-times less radio luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest-frame wavelengths just longward of the 4000A break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15 kpc scale are not. We discuss these results in the context of popular models for the alignment effect.Comment: 16 pages, 8 figures. Accepted by MNRA

    Weak Gravitational Lensing by a Sample of X-ray Luminous Clusters of Galaxies -- III. Serendipitous Weak Lensing Detections of Dark and Luminous Mass Concentrations

    Get PDF
    In the course of a weak gravitational lensing survey of 39 clusters of galaxies,covering a total sky area of ~1 square degree, we have serendipitously discovered mass concentrations in the fields of A1705 and A1722 which are most probably not associated with the main cluster target. By combining weak lensing information with two-color galaxy photometry in fields centered on our sample clusters, we identify a new cluster candidate at z~0.5 in the field of A1705. This cluster candidate also displays strong lensing in the form of a giant luminous arc. The new mass concentration in the field of A1722 also seems to be associated with an optically luminous cluster of galaxies at z~0.5, but in this case there is some evidence for additional structures along the line of sight that may contribute to the lensing signal. A third cluster, A959, has a dark sub-clump which shows interesting morphological evidence in the mass map for being associated with the main cluster. This is the first case where there is any significant evidence for a physical association between a dark sub-clump (discovered from weak lensing) and a normal cluster. Analysis of archival X-ray data shows that the three new mass concentrations are not firmly detected in X-rays and that they are X-ray underluminous.Comment: 14 pages, 10 figures, version accepted by ApJ. See http://www.nordita.dk/~dahle/paper3.ps.gz for a version with high-resolution figures and Fig.5 in colo

    Weak Gravitational Lensing by a Sample of X-Ray Luminous Clusters of Galaxies -- II. Comparison with Virial Masses

    Full text link
    Dynamic velocity dispersion and mass estimates are given for a sample of five X-ray luminous rich clusters of galaxies at intermediate redshifts (z~0.3) drawn from a sample of 39 clusters for which we have obtained gravitational lens mass estimates. The velocity dispersions are determined from between 9 and 20 redshifts measured with the LDSS spectrograph of the William Herschel Telescope, and virial radii are determined from imaging using the UH8K mosaic CCD camera on the University of Hawaii 2.24m telescope. Including clusters with velocity dispersions taken from the literature, we have velocity dispersion estimates for 12 clusters in our gravitational lensing sample. For this sample we compare the dynamical velocity dispersion estimates with our estimates of the velocity dispersions made from gravitational lensing by fitting a singular isothermal sphere profile to the observed tangential weak lensing distortion as a function of radius. In all but two clusters, we find a good agreement between the velocity dispersion estimates based on spectroscopy and on weak lensing.Comment: 9 pages, 4 figures, accepted for publication in ApJ. Version in emulateapj format with only minor change

    The Radio-Optical Correlation in Steep-Spectrum Quasars

    Get PDF
    Using complete samples of steep-spectrum quasars, we present evidence for a correlation between radio and optical luminosity which is not caused by selection effects, nor caused by an orientation dependence (such as relativistic beaming), nor a byproduct of cosmic evolution. We argue that this rules out models of jet formation in which there are no parameters in common with the production of the optical continuum. This is arguably the most direct evidence to date for a close link between accretion onto a black hole and the fuelling of relativistic jets. The correlation also provides a natural explanation for the presence of aligned optical/radio structures in only the most radio luminous high-redshift galaxies.Comment: MNRAS in press. Uses BoxedEPS (included

    Clustering of galaxies around radio quasars at 0.5 < z < 0.8

    Get PDF
    We have observed the galaxy environments around a sample of 21 radio-loud, steep-spectrum quasars at 0.5<z<0.82, spanning several orders of magnitude in radio luminosity. The observations also include background control fields used to obtain the excess number of galaxies in each quasar field. The galaxy excess was quantified using the spatial galaxy-quasar correlation amplitude, B_gq, and an Abell-type measurement, N_0.5 (Hill & Lilly 1991). A few quasars are found in relatively rich clusters, but on average, they seem to prefer galaxy groups or clusters of approximately Abell class 0. We have combined our sample with literature samples extending down to z=0.2 and covering the same range in radio luminosity. By using Spearman statistic to disentangle redshift and luminosity dependences, we detect a weak, but significant, positive correlation between the richness of the quasar environment and the quasar's radio luminosity. However, we do not find any epoch dependence in B_gq, as has previously been reported for radio quasars and galaxies. We discuss the radio luminosity-cluster richness link and possible explanations for the weak correlation that is seen.Comment: 18 pages, 9 figures, submitted to MNRA

    Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    Get PDF
    This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. Reproduced with permission, © ESO, 201

    Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C

    Get PDF
    The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM)

    Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds

    Get PDF
    Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry on 1°-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary), cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>5σ) excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-compact H ii regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with model spectra of spinning dust. Peak frequencies are in the range 20−35 GHz except for the California nebula (NGC 1499), which appears to have a high spinning dust peak frequency of (50 ± 17) GHz. The AME regions tend to be more spatially extended than regions with little or no AME. The AME intensity is strongly correlated with the sub-millimetre/IR flux densities and comparable to previous AME detections in the literature. AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend to be associated with cooler dust in the range 14−20 K and an average emissivity index, ÎČd, of +1.8, while the non-AME regions are typically warmer, at 20−27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density. This supports the idea of AME originating from small grains that are known to be depleted in dense regions, probably due to coagulation onto larger grains. We also find a correlation between the AME emissivity (and to a lesser degree the spinning dust peak frequency) and the intensity of the interstellar radiation field, G0. Modelling of this trend suggests that both radiative and collisional excitation are important for the spinning dust emission. The most significant AME regions tend to have relatively less ionized gas (free-free emission), although this could be a selection effect. The infrared excess, a measure of the heating of dust associated with H ii regions, is typically >4 for AME sources, indicating that the dust is not primarily heated by hot OB stars. The AME regions are associated with known dark nebulae and have higher 12 ÎŒm/25 ÎŒm ratios. The emerging picture is that the bulk of the AME is coming from the polycyclic aromatic hydrocarbons and small dust grains from the colder neutral interstellar medium phase. Reproduced with permission from Astronomy & Astrophysics, © ESO 201
    corecore