235 research outputs found
How early can myocardial iron overload occur in Beta thalassemia major?
BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM.
METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload.
CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old
Adolescents and Young Adults with Systemic Lupus Erythematosus Experience the Disease and the Needs of the Meta Integration
Objective: To synthesize qualitative evidence on the illness experiences and needs of adolescents and young adults (AYAs) with systemic lupus erythematosus (SLE) to inform nursing interventions.Methods: A systematic review (inception-Jan 2024) was conducted across nine databases (CINAHL, Embase, PubMed, Web of Science, Cochrane Library, VIP, Wanfang, CNKI, SinoMed). Qualitative studies exploring AYA SLE experiences were included. Studies were critically appraised using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Qualitative Research. Data synthesis followed the JBI meta-aggregation approach.Results: Four qualitative studies (all JBI-rated moderate quality) met inclusion criteria. Analysis extracted 26 unequivocal findings, grouped them into 6 categories, and synthesized 3 overarching themes: Enduring Cyclical Distress: Persistent pain, fatigue, treatment burden, and emotional turmoil. Disease-Imposed Constraints: Disrupted education/employment, social isolation, and restricted life trajectories. Resilience and Support Needs: Desire for self-management knowledge, positive coping strategies (problem-focused, adaptive emotional, social), and external support for growth.Conclusion: AYAs with SLE navigate profound physical/psychological suffering and significant life disruptions. They demonstrate potential for resilience but require proactive nursing support. Clinicians must prioritize mental health screening, provide tailored psychosocial interventions, and empower AYAs with self-management skills and accessible education to foster positive coping and improve quality of life
Characterization of the histone methyltransferase PRDM9 using biochemical, biophysical and chemical biology techniques
PRDM proteins have emerged as important regulators of disease and developmental processes. To gain insight into the mechanistic actions of the PRDM family, we have performed comprehensive characterization of a prototype member protein, the histone methyltransferase PRDM9, using biochemical, biophysical and chemical biology techniques. In the present paper we report the first known molecular characterization of a PRDM9-methylated recombinant histone octamer and the identification of new histone substrates for the enzyme. A single C321P mutant of the PR/SET domain was demonstrated to significantly weaken PRDM9 activity. Additionally, we have optimized a robust biochemical assay amenable to high-throughput screening to facilitate the generation of small-molecule chemical probes for this protein family. The present study has provided valuable insight into the enzymology of an intrinsically active PRDM protein
Contrast-enhanced computed tomography-based radiomics nomogram for predicting HER2 status in urothelial bladder carcinoma
ObjectiveTo evaluate the performance of a clinical-radiomics model based on contrast-enhanced computed tomography (CE-CT) in assessing human epidermal growth factor receptor 2 (HER2) status in urothelial bladder carcinoma (UBC).MethodsFrom January 2022 to December 2023, 124 patients with UBC were classified into the training (n=100) and test (n=24) sets. CE-CT scans were performed on the patients. Univariate and multivariate analyses were conducted to identify independent predictors of HER2 status in patients with UBC. We employed eight machine learning algorithms to establish radiomic models. A clinical-radiomics model was developed by integrating radiomic signatures and clinical features. Receiver operating characteristic curves and decision curve analysis (DCA) were generated to evaluate and validate the predictive capabilities of the models.ResultsAmong the eight classifiers, the random forest radiomics model based on CE-CT demonstrated the highest efficacy in predicting HER2 status, with area under the curve (AUC) values of 0.880 (95% CI: 0.813–0.946) and 0.814 (95% CI: 0.642–0.986) in the training and test sets, respectively. In the training set, the clinical-radiomics model achieved an AUC of 0.935, an accuracy of 0.870, a sensitivity of 0.881, and a specificity of 0.854. In the test set, the clinical-radiomics model achieved an AUC of 0.857, an accuracy of 0.760, a sensitivity of 0.643, and a specificity of 0.900. DCA analysis indicated that the clinical-radiomics model provided good clinical benefit.ConclusionThe radiomics nomogram demonstrates good diagnostic performance in predicting HER2 expression in patients with UBC
Hypoxia-induced downregulation of SRC-3 suppresses trophoblastic invasion and migration through inhibition of the AKT/mTOR pathway: Implications for the pathogenesis of preeclampsia
Preeclampsia (PE) is characterized by poor placentation, consequent on aberrant extravillous trophoblast (EVT) cell function during placental development. The SRC family of proteins is important during pregnancy, especially SRC-3, which regulates placental morphogenesis and embryo survival. Although SRC-3 expression in mouse trophoblast giant cells has been documented, its role in the functional regulation of extravillous trophoblasts and the development of PE remains unknown. This study found that SRC-3 expression was significantly lower in placentas from PE pregnancies as compared to uncomplicated pregnancies. Additionally, both CoCl2-mimicked hypoxia and suppression of endogenous SRC-3 expression by lentivirus short hairpin RNA attenuated the migration and invasion abilities of HTR-8/SVneo cells. Moreover, we demonstrated that SRC-3 physically interacts with AKT to regulate the migration and invasion of HTR-8 cells, via the AKT/mTOR pathway. We also found that the inhibition of HTR-8 cell migration and invasion by CoCl2-mimicked hypoxia was through the SRC-3/AKT/mTOR axis. Our findings indicate that, in early gestation, accumulation of HIF-1α inhibits the expression of SRC-3, which impairs extravillous trophoblastic invasion and migration by directly interacting with AKT. This potentially leads to insufficient uterine spiral artery remodeling and placental hypoperfusion, and thus the development of PE
Preparation and Characterization of Superparamagnetic Molecularly Imprinted Polymers for Selective Adsorption and Separation of Vanillin in Food Samples
Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes
Untangling influence: The effect of follower-followee comparison on social media engagement
- …
