53 research outputs found

    Comprehensive analysis of PM20D1 QTL in Alzheimer’s disease

    Get PDF
    Background Alzheimer’s disease (AD) is a complex disorder caused by a combination of genetic and non-genetic risk factors. In addition, an increasing evidence suggests that epigenetic mechanisms also accompany AD. Genetic and epigenetic factors are not independent, but multiple loci show genetic-epigenetic interactions, the so-called quantitative trait loci (QTLs). Recently, we identified the first QTL association with AD, namely Peptidase M20 Domain Containing 1 (PM20D1). We observed that PM20D1 DNA methylation, RNA expression, and genetic background are correlated and, in turn, associated with AD. We provided mechanistic insights for these correlations and had shown that by genetically increasing and decreasing PM20D1 levels, AD-related pathologies were decreased and accelerated, respectively. However, since the PM20D1 QTL region encompasses also other genes, namely Nuclear Casein Kinase and Cyclin Dependent Kinase Substrate 1 (NUCKS1); RAB7, member RAS oncogene family-like 1 (RAB7L1); and Solute Carrier Family 41 Member 1 (SLC41A1), we investigated whether these genes might also contribute to the described AD association. Results Here, we report a comprehensive analysis of these QTL genes using a repertoire of in silico methods as well as in vivo and in vitro experimental approaches. First, we analyzed publicly available databases to pinpoint the major QTL correlations. Then, we validated these correlations using a well-characterized set of samples and locus-specific approaches—i.e., Sanger sequencing for the genotype, cloning/sequencing and pyrosequencing for the DNA methylation, and allele-specific and real-time PCR for the RNA expression. Finally, we defined the functional relevance of the observed alterations in the context of AD in vitro. Using this approach, we show that only PM20D1 DNA methylation and expression are significantly correlated with the AD-risk associated background. We find that the expression of SLC41A1 and PM20D1—but not NUCKS1 and RAB7L1—is increased in mouse models and human samples of AD, respectively. However, SLC41A1 and PM20D1 are differentially regulated by AD-related stressors, with only PM20D1 being upregulated by amyloid-β and reactive oxygen species, and with only PM20D1 being neuroprotective when overexpressed in cell and primary cultures. Conclusions Our findings reinforce PM20D1 as the most likely gene responsible of the previously reported PM20D1 QTL association with AD

    Modulation of receptor cycling by neuron-enriched endosomal protein of 21 kD

    Get PDF
    Although correct cycling of neuronal membrane proteins is essential for neurite outgrowth and synaptic plasticity, neuron-specific proteins of the implicated endosomes have not been characterized. Here we show that a previously cloned, developmentally regulated, neuronal protein of unknown function binds to syntaxin 13. We propose to name this protein neuron-enriched endosomal protein of 21 kD (NEEP21), because it is colocalized with transferrin receptors, internalized transferrin (Tf), and Rab4. In PC12 cells, NEEP21 overexpression accelerates Tf internalization and recycling, whereas its down-regulation strongly delays Tf recycling. In primary neurons, NEEP21 is localized to the somatodendritic compartment, and, upon N-methyl-d-aspartate (NMDA) stimulation, the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunit GluR2 is internalized into NEEP21-positive endosomes. NEEP21 down-regulation retards recycling of GluR1 to the cell surface after NMDA stimulation of hippocampal neurons. In summary, NEEP21 is a neuronal protein that is localized to the early endosomal pathway and is necessary for correct receptor recycling in neurons

    GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2

    Get PDF
    Mutations in the LRRK2 gene cause autosomal dominant Parkinson's disease. LRRK2 encodes a multi-domain protein containing a Ras-of-complex (Roc) GTPase domain, a C-terminal of Roc domain and a protein kinase domain. LRRK2 can function as a GTPase and protein kinase, although the interplay between these two enzymatic domains is poorly understood. Although guanine nucleotide binding is critically required for the kinase activity of LRRK2, the contribution of GTP hydrolysis is not known. In general, the molecular determinants regulating GTPase activity and how the GTPase domain contributes to the properties of LRRK2 remain to be clarified. Here, we identify a number of synthetic missense mutations in the GTPase domain that functionally modulate GTP binding and GTP hydrolysis and we employ these mutants to comprehensively explore the contribution of GTPase activity to the kinase activity and cellular phenotypes of LRRK2. Our data demonstrate that guanine nucleotide binding and, to a lesser extent, GTP hydrolysis are required for maintaining normal kinase activity and both activities contribute to the GTP-dependent activation of LRRK2 kinase activity. Guanine nucleotide binding but not GTP hydrolysis regulates the dimerization, structure and stability of LRRK2. Furthermore, GTP hydrolysis regulates the LRRK2-dependent inhibition of neurite outgrowth in primary cortical neurons but is unable to robustly modulate the effects of the familial G2019S mutation. Our study elucidates the role of GTPase activity in regulating kinase activity and cellular phenotypes of LRRK2 and has important implications for the validation of the GTPase domain as a molecular target for attenuating LRRK2-mediated neurodegeneratio

    PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity

    Get PDF
    Mutations in the ATP13A2 gene (PARK9, OMIM 610513) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome and early-onset parkinsonism. ATP13A2 is an uncharacterized protein belonging to the P5-type ATPase subfamily that is predicted to regulate the membrane transport of cations. The physiological function of ATP13A2 in the mammalian brain is poorly understood. Here, we demonstrate that ATP13A2 is localized to intracellular acidic vesicular compartments in cultured neurons. In the human brain, ATP13A2 is localized to pyramidal neurons within the cerebral cortex and dopaminergic neurons of the substantia nigra. ATP13A2 protein levels are increased in nigral dopaminergic and cortical pyramidal neurons of Parkinson's disease brains compared with normal control brains. ATP13A2 levels are increased in cortical neurons bearing Lewy bodies (LBs) compared with neurons without LBs. Using short hairpin RNA-mediated silencing or overexpression to explore the function of ATP13A2, we find that modulating the expression of ATP13A2 reduces the neurite outgrowth of cultured midbrain dopaminergic neurons. We also find that silencing of ATP13A2 expression in cortical neurons alters the kinetics of intracellular pH in response to cadmium exposure. Furthermore, modulation of ATP13A2 expression leads to reduced intracellular calcium levels in cortical neurons. Finally, we demonstrate that silencing of ATP13A2 expression induces mitochondrial fragmentation in neurons. Oppositely, overexpression of ATP13A2 delays cadmium-induced mitochondrial fragmentation in neurons consistent with a neuroprotective effect. Collectively, this study reveals a number of intriguing neuronal phenotypes due to the loss- or gain-of-function of ATP13A2 that support a role for this protein in regulating intracellular cation homeostasis and neuronal integrit

    Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily

    Get PDF
    Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein-protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1-3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morpholog

    Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

    Get PDF
    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism

    Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration

    Get PDF
    Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal distribution throughout the rodent brain, including within the nigrostriatal dopaminergic pathway. In the human brain, VPS35 protein levels and distribution are similar in tissues from control and PD subjects, and VPS35 is not associated with Lewy body pathology. The common D620N missense mutation in VPS35 does not compromise its protein stability or localization to endosomal and lysosomal vesicles, or the vesicular sorting of the retromer cargo, sortilin, SorLA and cation-independent mannose 6-phosphate receptor, in rodent primary neurons or patient-derived human fibroblasts. In yeast we show that PD-linked VPS35 mutations are functional and can normally complement VPS35 null phenotypes suggesting that they do not result in a loss-of-function. In rat primary cortical cultures the overexpression of human VPS35 induces neuronal cell death and increases neuronal vulnerability to PD-relevant cellular stress. In a novel viral-mediated gene transfer rat model, the expression of D620N VPS35 induces the marked degeneration of substantia nigra dopaminergic neurons and axonal pathology, a cardinal pathological hallmark of PD. Collectively, these studies establish that dominant VPS35 mutations lead to neurodegeneration in PD consistent with a gain-of-function mechanism, and support a key role for VPS35 in the development of P

    A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity

    Get PDF
    Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patient

    A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity

    Get PDF
    Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patients

    GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD–associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD–associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD
    corecore