154 research outputs found

    GW25-e5206 Role of perivascular adipose tissue-derived LET-7B in vascular inflammation VIA ADRB3

    Get PDF

    Breakdown of effective-medium theory beyond the critical angle

    Full text link
    Effective-medium theory pertains to the theoretical modelling of homogenization, which aims to replace an inhomogeneous structure of subwavelength-scale constituents with a homogeneous effective medium. The effective-medium theory is fundamental to various realms, including electromagnetics and material science, since it can largely decrease the complexity in the exploration of light-matter interactions by providing simple acceptable approximation. Generally, the effective-medium theory is thought to be applicable to any all-dielectric system with deep-subwavelength constituents, under the condition that the effective medium does not have a critical angle, at which the total internal reflection occurs. Here we reveal a fundamental breakdown of the effective-medium theory that can be applied in very general conditions: showing it for deep-subwavelength all-dielectric multilayers even without critical angle. Our finding relies on an exotic photonic spin Hall effect, which is shown to be ultra-sensitive to the stacking order of deep-subwavelength dielectric layers, since the spin-orbit interaction of light is dependent on slight phase accumulations during the wave propagation. Our results indicate that the photonic spin Hall effect could provide a promising and powerful tool for measuring structural defects for all-dielectric systems even in the extreme nanometer scale.Comment: 17 pages, 4 figure

    Randomized trial of transcutaneous auricular vagus nerve stimulation on patients with disorders of consciousness: A study protocol

    Get PDF
    BackgroundTranscutaneous auricular vagus nerve stimulation (taVNS) has recently been explored for the treatment of Disorders of consciousness (DoC) caused by traumatic brain injury. The evidence of taVNS during the consciousness recovery has been recently reported. However, the mechanism of taVNS in the recovery of consciousness is not clear. This study attempts to investigate the effectiveness of taVNS in DoC by means of Coma Recovery Scale-Revised (CRS-R), Magnetic resonance imaging (MRI), Electrophysiology (EEG), and Single-molecular array (Simoa).Methods/designNighty patients with DoC acquired brain injury are randomized into one of three groups receiving sham taVNS or active taVNS (just left and left or right), respectively. Each of the three groups will experience a 40 days cycle (every 10 days for a small period, baseline 2 weeks, intervention 2 weeks, 40 min per day, 5 days per week, then no intervention for 2 weeks, intervention 2 weeks, 40 min per day, and 5 days per week). Primary outcomes (CRS-R) will be recorded five times during every period. Secondary outcomes will be recorded at the first and at the last period [MRI, EEG, Phosphorylated tau (P-tau), and Neurofilament light chain (NFL)]. We will take notes the adverse events and untoward effects during all cycles.DiscussionTranscutaneous auricular vagus nerve stimulation as a painless, non-invasive, easily applied, and effective therapy was applied for treatment of patients with depression and epilepsy several decades ago. Recent progress showed that taVNS has behavioral effects in the consciousness recovery. However, there is no clinical evidence to support the effects of taVNS on brain activity. Therefore, we will design a randomized controlled trial to evaluate the effectiveness and safety of taVNS therapy for DoC, and explore neural anatomy correlated to taVNS during the consciousness recovery. Finally, this protocol also tests some biomarkers along with the recovery of consciousness.Clinical Trial RegistrationChinese Clinical Trial Registry, ChiCTR2100045161. Registered on 9 April 2021

    The impact of cognitive training on cerebral white matter in community-dwelling elderly : one-year prospective longitudinal diffusion tensor imaging study

    Get PDF
    It has been shown that cognitive training (CogTr) is effective and recuperative for older adults, and can be used to fight against cognitive decline. In this study, we investigated whether behavioural gains from CogTr would extend to white matter (WM) microstructure, and whether training-induced changes in WM integrity would be associated with improvements in cognitive function, using diffusion tensor imaging (DTI). 48 healthy community elderly were either assigned to multi-domain or single-domain CogTr groups to receive 24 sessions over 12 weeks, or to a control group. DTI was performed at both baseline and 12-month follow-up. Positive effects of multi-domain CogTr on long-term changes in DTI indices were found in posterior parietal WM. Participants in the multi-domain group showed a trend of long-term decrease in axial diffusivity (AD) without significant change in fractional anisotropy (FA), mean diffusivity (MD) or radial diffusivity (RD), while those in the control group displayed a significant FA decrease, and an increase in MD and RD. In addition, significant relationships between an improvement in processing speed and changes in RD, MD and AD were found in the multi-domain group. These findings support the hypothesis that plasticity of WM can be modified by CogTr, even in late adulthood

    K-LITE: Learning Transferable Visual Models with External Knowledge

    Full text link
    Recent state-of-the-art computer vision systems are trained from natural language supervision, ranging from simple object category names to descriptive captions. This free form of supervision ensures high generality and usability of the learned visual models, based on extensive heuristics on data collection to cover as many visual concepts as possible. Alternatively, learning with external knowledge about images is a promising way which leverages a much more structured source of supervision. In this paper, we propose K-LITE (Knowledge-augmented Language-Image Training and Evaluation), a simple strategy to leverage external knowledge to build transferable visual systems: In training, it enriches entities in natural language with WordNet and Wiktionary knowledge, leading to an efficient and scalable approach to learning image representations that can understand both visual concepts and their knowledge; In evaluation, the natural language is also augmented with external knowledge and then used to reference learned visual concepts (or describe new ones) to enable zero-shot and few-shot transfer of the pre-trained models. We study the performance of K-LITE on two important computer vision problems, image classification and object detection, benchmarking on 20 and 13 different existing datasets, respectively. The proposed knowledge-augmented models show significant improvement in transfer learning performance over existing methods.Comment: Preprint. The first three authors contribute equall

    Health effects of high serum calcium levels:Updated phenome-wide Mendelian randomisation investigation and review of Mendelian randomisation studies

    Get PDF
    BACKGROUND: Calcium plays a role in a wide range of biological functions. Here we conducted a phenome-wide Mendelian randomisation (MR-PheWAS) analysis and a systematic review for MR studies to comprehensively investigate the health effects of serum calcium. METHODS: One-hundred and thirty genetic variants strongly associated with serum calcium levels were used as instrumental variables. A phenome-wide association analysis (PheWAS) was conducted to examine the associations of genetically predicted serum calcium with 1473 distinct phenotypes in the UK Biobank including 339,197 individuals. Observed associations in PheWAS were further tested for replication in two-sample MR replication analysis. A systematic review for MR studies on serum calcium was performed to synthesize the published evidence and compare with the current MR-PheWAS findings. FINDINGS: Higher genetically predicted calcium levels were associated with decreased risk of 5 diseases in dermatologic and musculoskeletal systems and increased risk of 17 diseases in circulatory, digestive, endocrine, genitourinary and immune systems. Eight associations were replicated in two-sample MR analysis. These included decreased risk of osteoarthritis and increased risk of coronary artery disease, myocardial infarction, coronary atherosclerosis, hyperparathyroidism, disorder of parathyroid gland, gout, and calculus of kidney and ureter with increased serum calcium. Systematic review of 25 MR studies provided supporting evidence on five out of the eight disease outcomes, while the increased risk of gout, hyperparathyroidism and disorder of parathyroid gland were novel findings. INTERPRETATION: This study found wide-ranged health effects of high serum calcium, which suggests that the benefits and adversities of strategies promoting calcium intake should be assessed. FUNDING: ET is supported by a CRUK Career Development Fellowship (C31250/A22804). XL is supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province. SCL acknowledges research funding from the Swedish Heart Lung Foundation (Hjärt-Lungfonden, 20210351), the Swedish Research Council (Vetenskapsrådet, 2019-00977), and the Swedish Cancer Society (Cancerfonden)

    SUMOylation patterns and signature characterize the tumor microenvironment and predict prognosis in lung adenocarcinoma

    Get PDF
    Background: Recent studies have revealed that SUMOylation modifications are involved in various biological processes, including cancer development and progression. However, the precise role of SUMOylation in lung adenocarcinoma (LUAD), especially in the tumor immune microenvironment, is not yet clear.Methods: We identified SUMOylation patterns by unsupervised consensus clustering based on the expression of SUMOylation regulatory genes. The tumor microenvironment in lung adenocarcinoma was analyzed using algorithms such as GSVA and ssGSEA. Key genes of SUMOylation patterns were screened for developing a SUMOylation scoring model to assess immunotherapy and chemotherapy responses in lung adenocarcinoma patients. Experiments were conducted to validate the differential expression of model genes in lung adenocarcinoma. Finally, we constructed a nomogram based on the SUMOylation score to assess the prognosis of individual lung adenocarcinoma patients.Results: Two patterns of SUMOylation were identified, namely, SUMO-C1, which showed anti-tumor immune phenotype, and SUMO-C2, which showed immunosuppressive phenotype. Different genomic subtypes were also identified; subtype gene-T1 exhibited a reciprocal restriction between the immune microenvironment and stromal microenvironment. High SUMOylation scores were indicative of poor lung adenocarcinoma prognosis. SUMOylation score was remarkably negatively correlated with the infiltration of anti-tumor immune cells, and significantly positively correlated with immune cells promoting immune escape and immune suppression. In addition, patients with low scores responded better to immunotherapy. Therefore, the developed nomogram has a high prognostic predictive value.Conclusion: The SUMOylation patterns can well discriminate the tumor microenvironment features of lung adenocarcinoma, especially the immune cell infiltration status. The SUMOylation score can further assess the relationship between SUMOylation and immune cell crosstalk and has significant prognostic value and can be used to predict immunotherapy and chemotherapy response in patients with lung adenocarcinoma

    Developing and validating a nomogram for cognitive impairment in the older people based on the NHANES

    Get PDF
    ObjectiveTo use the United States National Health and Nutrition Examination Study (NHANES) to develop and validate a risk-prediction nomogram for cognitive impairment in people aged over 60 years.MethodsA total of 2,802 participants (aged ≥ 60 years) from NHANES were analyzed. The least absolute shrinkage and selection operator (LASSO) regression model and multivariable logistic regression analysis were used for variable selection and model development. ROC-AUC, calibration curve, and decision curve analysis (DCA) were used to evaluate the nomogram’s performance.ResultsThe nomogram included five predictors, namely sex, moderate activity, taste problem, age, and education. It demonstrated satisfying discrimination with a AUC of 0.744 (95% confidence interval, 0.696–0.791). The nomogram was well-calibrated according to the calibration curve. The DCA demonstrated that the nomogram was clinically useful.ConclusionThe risk-prediction nomogram for cognitive impairment in people aged over 60 years was effective. All predictors included in this nomogram can be easily accessed from its’ user

    Exploring the complex relationship between gut microbiota and risk of colorectal neoplasia using bidirectional Mendelian Randomization analysis

    Get PDF
    Background: Human gut microbiome has complex relation-ships with the host, contributing to metabolism, immunity, and carcinogenesis. Methods: Summary-level data for gut microbiota and metabo-lites were obtained from MiBioGen, FINRISK and human meta-bolome consortia. Summary-level data for colorectal cancer were derived from a genome-wide association study meta-analysis. In forward Mendelian randomization (MR), we employed genetic instrumental variables (IV) for 24 gut microbiota taxa and six bacterial metabolites to examine their causal relationship with colorectal cancer. We also used a lenient threshold for nine apriori gut microbiota taxa as secondary analyses. In reverse MR, we explored association between genetic liability to colorectal neoplasia and abundance of microbiota studied above using 95, 19, and 7 IVs for colorectal cancer, adenoma, and polyps, respectively. Results: Forward MR did not find evidence indicating causal relationship between any of the gut microbiota taxa or six bacterial metabolites tested and colorectal cancer risk. However, reverse MR supported genetic liability to colorectal adenomas was causally related with increased abundance of two taxa: Gammaproteobacteria (b = 0.027, which represents a 0.027 increase in log-transformed relative abundance values of Gam-maproteobacteria for per one-unit increase in log OR of adenoma risk; P = 7.06x10-8), Enterobacteriaceae (b = 0.023, P = 1.29x10-5). Conclusions: We find genetic liability to colorectal neoplasia may be associated with abundance of certain microbiota taxa. It is more likely that subset of colorectal cancer genetic liability variants changes gut biology by influencing both gut microbiota and colo-rectal cancer risk.Impact: This study highlights the need of future complemen-tary studies to explore causal mechanisms linking both host genetic variation with gut microbiome and colorectal cancer susceptibility
    • …
    corecore