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Background: Recent studies have revealed that SUMOylation modifications are
involved in various biological processes, including cancer development and
progression. However, the precise role of SUMOylation in lung
adenocarcinoma (LUAD), especially in the tumor immune microenvironment, is
not yet clear.

Methods: We identified SUMOylation patterns by unsupervised consensus
clustering based on the expression of SUMOylation regulatory genes. The
tumor microenvironment in lung adenocarcinoma was analyzed using
algorithms such as GSVA and ssGSEA. Key genes of SUMOylation patterns
were screened for developing a SUMOylation scoring model to assess
immunotherapy and chemotherapy responses in lung adenocarcinoma
patients. Experiments were conducted to validate the differential expression of
model genes in lung adenocarcinoma. Finally, we constructed a nomogram based
on the SUMOylation score to assess the prognosis of individual lung
adenocarcinoma patients.

Results: Two patterns of SUMOylation were identified, namely, SUMO-C1, which
showed anti-tumor immune phenotype, and SUMO-C2, which showed
immunosuppressive phenotype. Different genomic subtypes were also
identified; subtype gene-T1 exhibited a reciprocal restriction between the
immune microenvironment and stromal microenvironment. High SUMOylation
scores were indicative of poor lung adenocarcinoma prognosis. SUMOylation
score was remarkably negatively correlated with the infiltration of anti-tumor
immune cells, and significantly positively correlated with immune cells promoting
immune escape and immune suppression. In addition, patients with low scores
responded better to immunotherapy. Therefore, the developed nomogram has a
high prognostic predictive value.

Conclusion: The SUMOylation patterns can well discriminate the tumor
microenvironment features of lung adenocarcinoma, especially the immune
cell infiltration status. The SUMOylation score can further assess the
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relationship between SUMOylation and immune cell crosstalk and has significant
prognostic value and can be used to predict immunotherapy and chemotherapy
response in patients with lung adenocarcinoma.
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1 Introduction

Lung cancer is among the most commonly diagnosed cancers
that pose a critical threat to public health (Siegel et al., 2022) and
is a leading cause of cancer-related deaths worldwide (Minguet
et al., 2016; Horn et al., 2017), approximately 85% of lung cancers
are Non-small cell lung cancer with lung adenocarcinoma being
the predominant pathological type. Increasing evidence suggests
that the tumor microenvironment (TME) plays a critical role in
local drug resistance, immune escape, cancer metastasis, and
recurrence. It is well known that macrophage M2 type
polarization, T regulatory (Treg) cells and MDSC cells can
facilitate the advancement of lung adenocarcinoma, and
Th2 helper cells can help the tumor immune escape process,
however, CD8+ T cells and cytotoxic T cells, etc. are the main
force of anti-tumor immunity (Anderson and Simon, 2020).
Understanding the tumor microenvironment has profound
relevance in preventing metastasis, surmounting acquired drug
resistance, and boosting therapeutic efficacy.

SUMOylation is one of the post-translational protein
modifications and participates in the regulation of the cell
cycle, DNA replication and repair, immunomodulation, and
other biological processes (Eifler and Vertegaal, 2015; Chang
and Yeh, 2020). Five categories of regulatory genes, including
SUMO isoforms, SUMO-Activating Enzyme, SUMO-
Conjugating Enzyme, SUMO E3 ligases, and SUMO
proteases, regulate the homeostasis of SUMOylation and
deSUMOylation (Bawa-Khalfe and Yeh, 2010; Chang and
Yeh, 2020). SUMOylation protein modification is associated
with Myc-driven tumor heterogeneity (Kessler et al., 2012).
SENP7 has been reported to sustain the metabolic fitness and
effector functions of tumor-infiltrating CD8+ T cells (Wu et al.,
2022). Overexpression of SENP1 has also been shown to be
involved in lung adenocarcinoma progression (Wang et al.,
2013), and SAE1, UBC9, and SENP3 are remarkably
upregulated in lung adenocarcinoma and are associated with
poor prognosis (Han et al., 2010). Recent studies suggest that the
dynamic regulatory processes of SUMOylation and
deSUMOylation may modulate antitumor immune processes
in the TME by targeting multiple immunocytes.
PIAS3 inhibits the activated STAT3 signaling pathway to
engage in antitumor immune regulation (Zou et al., 2020).
The overexpression of SUMO2 increased IL6 production by
T cells, which are potent killers of tumor cells (Won et al.,
2015). Decreased UBC9 expression suppressed Treg activation
and the production of immune inhibitory molecules including
IL10, CTLA4, PD-1, and ICOS (Shevach, 2009). AK-981, an
inhibitor of SUMOylation, can directly stimulate T cells and
enhance T cell sensitivity as well as response to antigens in vitro

and in vivo (Lightcap et al., 2021). In this study, we explored the
critical roles of SUMOylation in lung adenocarcinoma TME.

Several studies have revealed that SUMOylation regulatory
genes are involved in the process of TME regulation (Chang and
Ding, 2018). However, these studies are limited in that they study
individual SUMOylation regulators, and a comprehensive
analysis of the effect of SUMOylation on the tumor immune
microenvironment has not been conducted before. By identifying
different SUMO-associated TME types modulated by multiple
SUMOylation regulators, we can gain a more comprehensive
understanding of the regulation of the lung adenocarcinoma
tumor microenvironment by SUMOylation. Therefore, we
developed and validated SUMOylation patterns and signature
to predict tumor microenvironmental phenotype and prognostic
risk in lung adenocarcinoma.

2 Materials and methods

2.1 Data source and processing

Lung adenocarcinoma datasets GSE31210 (N = 226)
(Okayama et al., 2012), GSE37745 (N = 106) (Botling et al.,
2013), GSE50081 (N = 180) (Der et al., 2014), and GSE72094 (N =
398) (Schabath et al., 2016) were downloaded from the NCBI
gene expression omnibus (GEO) database. The samples with
missing survival data were removed and all data were log2
(x+1) normalized and corrected. The ComBat method in the
“SVA” package was used to eliminate batch effects among the
four GEO datasets and to integrate the four GEO datasets for
subsequent analyses. All datasets contained a total of 857 lung
adenocarcinoma sample data containing clinical information
such as survival data, gender, age, pathological stage, and
smoking history. The lung adenocarcinoma transcriptome
expression dataset was downloaded through the cancer
genome atlas (TCGA) database containing a total of 515 lung
adenocarcinoma samples (different samples from the same
patient were homogenized by taking the mean value) and
59 normal tissue samples; all expression data were
downloaded in the fragments per kilobase of exon per million
mapped fragments format and converted to the transcripts per
kilobase million (TPM) format with log2 (TPM+1) data
normalization operation. The survival data of 500 tumor
samples was known, of which the data of samples with a
survival time of 0 was removed and all others were rounded
to survival time in years. Mutation data and copy number
variation (CNV) data for lung adenocarcinoma were
downloaded from the TCGA Data Portal (https://tcga-data.nci.
nih.gov/tcga/).
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2.2 Unsupervised consensus clustering for
the identification of SUMOylation patterns

By reviewing the literature related to SUMOylation, we
identified 33 genes recognized as critical regulators in
SUMOylation (Chang and Yeh, 2020). Subsequently, we
performed unsupervised consensus clustering using the
“ConsensusClusterPlus” package based on the mRNA expression
of the 33 SUMOylation regulators. We use the “km” clustering
algorithm, the distance calculation algorithm is “euclidean,” and the
random seed is set to “123,456". The optimal clusters were
determined under the cumulative distribution curve (CDF), and
the rationality of the clusters was further verified using principal
component analysis (PCA). Consensus clustering was adopted with
1,000,000 replicates to optimize clustering results. The clustering
method for unsupervised consensus clustering analysis based on the
expression of differentially expressed key SUMOylation genes is
consistent with the above.

2.3 Gene set variation analysis and biological
pathways

We used the R package GSVA (Hanzelmann et al., 2013) to
study the biological processes associated with different
SUMOylation modification patterns. Hallmark gene sets
(Liberzon et al., 2015) and well-defined gene sets of biological
features were downloaded from MsigDB (http://www.gsea-
msigdb.org/gsea/msigdb/). The gene set of tumor-associated
biological pathways was were obtained from the compilation by
Mariathasan et al. (Mariathasan et al., 2018) and included the
following: angiogenesis, immune checkpoint, cell cycle regulators,
Pan fibroblast transforming growth factor beta (Pan F TBRs),
epithelial-mesenchymal transition processes involved in EMT1,
EMT2, EMT3, and the cell cycle. The immune checkpoint genes
(including immune co-stimulatory and immune co-inhibitory
molecules) and MHC molecules were derived from the immune-
related gene set compiled by Rooney et al. (Rooney et al., 2015).

2.4 Gene ontology (GO) annotation, GO
enrichment analysis, and KEGG enrichment
analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases are used to annotate genes and their
RNA or protein products to determine their unique biological
properties. GO annotation and KEGG annotation of
SUMOylation-related genes was performed using the R package
“clusterProfiler” with a cutoff value of false discovery rate
(FDR<0.05).

2.5 Estimation of immune cell infiltration by
ssGSEA and deconvolution algorithm

The gene set for each immune cell-specific marker was compiled
from a recent study, and Single Sample Gene Set Enrichment

Analysis (ssGSEA) (Barbie et al., 2009) was used to quantify the
relative abundance of 24 immune cell types in the TME and was
expressed as an enrichment fraction (Bindea et al., 2013).
Subsequently, the EPIC immune infiltration algorithm (Racle
et al., 2017) and the TIMER immune algorithm (Li et al., 2017)
were used to calculate the extent of infiltration of each immune cell
in lung adenocarcinoma tissue. Tumor tissue with abundant
immune cell infiltration is consistent with a higher immune score
and lower tumor purity.

2.6 Identification of differentially expressed
genes (DEGs) associated with SUMOylation
patterns and the construction of their
protein-protein interaction (PPI) networks

The R package “limma” was used to measure DEGs associated
with different SUMOylation patterns in lung adenocarcinoma
samples, with the significance filtering criteria for DEGs of |
FC| > 1.5 and FDR <0.05. The interaction of DEGs was
investigated using the STRING database and used to build PPI
networks, and the screening network type was a physical
subnetwork with a confidence score ≥0.7. We used the
“CytoHubba” plugin (Chin et al., 2014) in “Cytoscape” software
(Shannon et al., 2003) to calculate the number of neighboring nodes
in the PPI network, and filtered genes with neighboring nodes ≥5 as
SUMOylation-related key genes.

2.7 Calculation of SUMOylation scores

We performed a univariate cox regression analysis using DEGs
associated with SUMOylation modification patterns. Next, we
screened the significant prognostic correlates (p < 0.05) among
them for the optimal variables for constructing SUMOylation scores
using the least absolute shrinkage and selection operator (LASSO)
regression method. The SUMO score was calculated as follows:
RiskScore = Exp (Gene1)*β1+Exp (Gene2)*β2+. . . + Exp (Genen)
*βn. Where Exp is the expression of the genes and β is the regression
coefficient calculated by LASSO. Patients were then divided into the
high-risk and low-risk groups according to the optimal cut-off value
calculated using the surv-cutpoint function in the R package
“survival”. Prognostic analyses were conducted using the R
package “survminer”. Receiver operating characteristic (ROC)
curves were used to evaluate the prognostic performance of the
SUMOylation score and the nomogram model. The area under the
curve (AUC) was calculated using the R package “timeROC,” while
multiple regression analysis was used to verify the validity of the
score as an independent prognostic factor for lung adenocarcinoma.

2.8 Response to immunotherapy and
sensitivity to chemotherapeutic substances

The immunotherapy cohort GSE126044 (Cho et al., 2020)
contained a total of 16 lung adenocarcinoma recipients of
nivolumab (anti-PD1 drug) treatment, five of which were
responsive to (CR and PR) and 11 non-responsive to
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immunotherapy (PD and SD). (Tumor Immune Dysfunction and
Exclusion) TIDE (http://tide.dfci.harvard.edu/) is applied to predict
immunotherapy response for lung adenocarcinoma patients. Gene
expression data from pretreatment tissue samples were collated and
transformed into TPM format with log2 (TPM+1) normalization for
further analysis. Chemotherapy drug sensitivity analysis was
performed using the R package “pRRophetic” (Geeleher et al.,
2014) to predict clinical response to chemotherapy.

2.9 Clinical samples, RNA extraction, and
quantitative real-time PCR

Eighteen pairs of LUAD tissues and adjacent non-cancerous
lung tissues were obtained from the First Affiliated Hospital of
Soochow University after informed consent from patients.
Pathological diagnostics for patients with LUAD were assessed
according to the Revised International System for Staging Lung
Cancer. All patients included in this study did not receive any
radiation therapy, chemotherapy, or immunotherapy. The
experiment was approved by the Academic Advisory Board of
Soochow University.

Total RNA was isolated using Trizol reagent (Beyotime,
China) and reverse transcribed into cDNA by Hiscript III
Reverse Transcriptase (Vazyme, China). Real-Time PCR was
performed using ChamQ SYBR qPCR Master Mix (Vazyme,
China) on a LightCycler96 real-time PCR system (Roche,
Switzerland). The specific primers we used are listed in
Supplementary Table S1.

2.10 Statistical analysis

All statistical analyses in this study were performed using the
R software 4.1.2 or GraphPad Prism 9. For quantitative data,
normally distributed variables were analyzed using the Student’s
t-test, and non-normally distributed variables were analyzed
using the Wilcoxon rank-sum test. Statistical significant
differences between three and more data sets were analyzed
using the Kruskal–Wallis method for non-parametric
statistical tests and one-way ANOVA for parametric statistical
tests. We calculated correlation coefficients using Spearman and
distance correlation analysis. Survival analyses were conducted
using the Kaplan–Meier method and log-rank tests, while Cox
proportional risk regression models were used to analyze the
relationship between SUMOylation patterns and regulatory
genes and prognosis. All statistical comparisons in this study
were two-sided with α = 0.05 and the Benjamini-Hochberg
method was employed to control the false discovery rate
(FDR) for multiple hypothesis testing. *p < 0.05, **p < 0.01,
***p < 0.001.

3 Results

3.1 Genetic variation in SUMOylation
regulatory genes in lung adenocarcinoma

The flow chart shows our research procedure (Figure 1). We
investigated the role of 33 SUMOylation-modified regulatory genes

FIGURE 1
Flow chart of our study.
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in lung adenocarcinoma, namely, SUMO isoforms (SUMO1,
SUMO2, SUMO3, SUMO4), SUMO-Activating Enzyme (SAE1,
UBA2), SUMO-Conjugating Enzyme (UBE2I), SUMO E3 Ligases
(BCL11A, CAPN3, CBX4, HDAC4, HDAC7, MUL1, NSMCE2,
PIAS1, PIAS2, PIAS3, PIAS4, RANBP2, RANGAP1, RNF212,
RWDD3, TOPORS, TRIM27, TRIM28, ZMIZ1), SUMO proteases
(HINT1, SENP1, SENP2, SENP3, SENP6, SENP5, SENP7, USPL1).
The reversible process of SUMOylation is regulated by the
aforementioned regulatory genes (Figure 2A). We first performed
GO and KEGG enrichment analysis of the 33 SUMOylation
regulatory genes. GO enrichment revealed that the
33 SUMOylation-regulated genes were remarkably enriched in
biological processes such as lysine modification, protein
SUMOylation, regulation of small protein covalent protein
modification (Supplementary Figure S1A), and molecular
functions such as ubiquitinated protein convertase activity,
SUMO convertase activity, among others (Supplementary Figure

S1B). KEGG enrichment analysis revealed other SUMOylation-
related pathways (Supplementary Figure S1C).

Subsequently, for the comprehensive understanding of the
SUMOylation regulatory genes, we performed the Spearman
correlation analysis of the 33 SUMOylation regulatory genes to
assess their pattern of co-expression (Supplementary Figure S1D)
and found a broad significant negative correlation between the
expression of CAPN3 and PIAS1 and other regulatory genes, as
well as a significant positive correlation between CAPN3 and PIAS1
expression. Notably, most of the SUMOylation regulatory genes
were remarkably upregulated in tumor tissues, and overall, the
expression of SUMOylation regulatory genes was remarkably
different between the tumor and normal samples (Figure 2B).
PCA based on paired tumor and normal samples identified the
SUMOylation regulatory genes whose expression was significantly
different between normal and tumor samples (Supplementary
Figure S1E).

FIGURE 2
SUMOylation regulatory gene landscape in lung adenocarcinoma. (A) The reversible process regulation of SUMOylation and deSUMOylation. (B)
Differential expression of SUMOylation regulatory genes among lung adenocarcinoma and normal sample tissues. (C) Frequency of CNV (copy number
variation) of SUMOylation regulatory genes in lung adenocarcinoma. (D)Chromosomal localization of the CNV of SUMOylation regulatory genes. (E) The
landscape of tumor somatic mutations in SUMOylation regulatory genes in lung adenocarcinoma. (F) Univariate cox prognostic analysis of
SUMOylation regulatory genes in lung adenocarcinoma. (G) Interaction of SUMOylation regulatory genes in lung adenocarcinoma.
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Moreover, CNVs were very common in the 33 regulatory genes;
CNV amplifications were prevalent in PIAS3, NSMCE2, UBA2,
CBX4, and SUMO2, while CNV deletions were prevalent in
RWDD3, USPL1, SAE1, and CAPN3 (Figure 2C). The CNV
occurred widely in genes on a variety of chromosomes
(Figure 2D); however, they were concentrated mainly on
chromosomes 1, 3, 4, 6, 12, 15, and 19. We further evaluated the
prevalence of somatic mutations in SUMOylation regulatory genes.
Of the 561 lung adenocarcinoma samples, 126 (22.46%) had

alterations, mainly missense mutations and non-sense mutations,
in SUMOylation regulatory genes. RANBP2 and BCL11A had the
highest mutation frequency of 4%, followed by HDAC4, TOPORS,
and SENP7 with 2% mutation frequency; most mutations occurred
in the regulatory genes SUMO activator and E3 ligase, and less in
SUMO isoforms (Figure 2E). Subsequently, we analyzed the
mutational co-occurrence of the SUMOylation regulatory genes
and found that SUMO2 co-occurred with mutations in both
RANGAP1 and PIAS4 (Supplementary Figure S1F).

FIGURE 3
Identification of SUMOylation patterns and their associated biological functions. (A) Unsupervised cluster analysis based on 33 SUMOylation
regulatory genes, K = 2. (B) The cumulative distribution curve (CDF) suggests that the optimal K value for unsupervised clustering is 2. (C) Principal
component analysis (PCA) based on mRNA expression data of SUMOylation regulatory genes. (D) Kaplan-Meier curves for overall survival OS of two
SUMOylation patterns for a total of 857 lung adenocarcinoma samples (including 444 SUMO-C1 and 413 SUMO-C2 cases). (Log-Rank test p =
7.55e-07). (E) SUMOylation regulatory genes were significantly differentially expressed between the two SUMOylation models. (F) SUMOylation patterns
can be an independent prognostic factor for lung adenocarcinoma. (G)Heatmap showing the GSVA scores of the biological pathways of the HALLMARK
gene set among two SUMOylation patterns in lung adenocarcinoma. Annotated with Status, Smoking History, Stage, Gender, Age, GEO cohort,
SUMOylation patterns. Orange is high expression and blue is low expression.
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Furthermore, to determine the relationship between the
33 SUMOylation regulatory genes and the prognosis of lung
adenocarcinoma patients, we performed a cox risk proportional
regression model was used to determine the relationship between
the 33 SUMOylation regulatory genes and the prognosis of lung
adenocarcinoma patients, and the forest plot revealed that CAPN3,
SENP6, SENP7, RANBP2, HINT1, BCL11A, TOPORS, and HDAC4
were protective factors for lung adenocarcinoma and were generally
downregulated, while RANGAP1, SENP5, SAE1, SENP2, TRIM28,
and TRIM27 were risk factors for lung adenocarcinoma and were
upregulated in lung adenocarcinoma (Figure 2F). The multivariate
Cox proportional Hazards regression analysis further established
that SUMOylation regulatory genes were significantly associated
with lung adenocarcinoma prognosis (Supplementary Figure S1G).
In conclusion, we mapped the relationship between SUMOylation
regulatory genes and lung adenocarcinoma prognosis (Figure 2G).
In summary, we determined that SUMOylation regulatory genes
differed significantly between normal and lung adenocarcinoma
tissues and were also markedly correlated with the frequency of
mutations and CNVs in lung adenocarcinoma. In addition, we
demonstrated that altered expression and genetic variation of
specific SUMOylation regulatory genes have a critical role in the
development and prognosis of lung adenocarcinoma.

3.2 Identification of two different
SUMOylation patterns based on the
expression of 33 SUMOylation-regulated
genes

For exploring different SUMOylation patterns, we collated
857 lung adenocarcinoma patients in four datasets of the GEO
database for unsupervised consistency clustering based on
33 SUMOylation regulatory genes. Based on the variation of the
area under the CDF curve (Figures 3A, B; Supplementary Figure
S2A), we determined the optimal number of clusters to be 2 (K = 2).
We subsequently performed PCA of the two SUMOylation patterns
based on mRNA expression data of the regulatory genes (Figure 3C)
and found that the two different modification patterns could be
completely distinguished by SUMOylation regulatory genes.
Meanwhile, Kaplan–Meier survival analysis revealed that patients
with the SUMO-C2 pattern showed a worse prognostic survival
(log-Rank test p = 7.55e-07) (Figure 3D). The occurrence of the
SUMO-C2 pattern was consistent with the downregulation of
BCL11A, CAPN3, HDAC4, PIAS4, UBA2, UBE2I, SENP6,
SENP7, and USPL1, and the upregulation of CBX4, NSMCE2,
PIAS3, RANGAP1, TRIM28 and SENP2 (Figure 3E). The
Heatmap further confirmed that the expression of the
33 SUMOylation-regulated genes was significantly different in the
two SUMOylation patterns (Supplementary Figure S2B). The
multivariate Cox regression results indicated, in agreement with
Kaplan–Meier results, that the SUMOylation patterns can be an
independent prognostic factor, and compared with SUMO-C1,
SUMO-C2 was associated with poor prognostic survival, HR =
1.55, p < 0.001 (Figure 3F).

To further explore the differences in key biological pathways
associated with the two SUMOylation patterns. The GSVA
algorithm was used to calculate the Hallmark gene set scores and

convert them into a scoring matrix of the gene set. We found that
there were significant differences in GSVA scores of Hallmark gene
sets consistent with SUMO-C1 and SUMO-C2 (Figure 3G), and
SUMO-C2 were mainly enriched in biological pathways related to
the cell cycle, glucose metabolism, and genetic material replication
and repair, such as G2M checkpoint, E2F targets, DNA repair,
Glycolysis, and PI3K-AKT-mTOR signaling pathways and was
highly active in biological processes related to cancer progression
such as hypoxia, angiogenesis, and epithelial-mesenchymal
transition (Supplementary Figure S2C). In contrast, SUMO-C1
was mainly enriched in tumor immune-related processes, such as
TNFA signaling via NF-κB, IL6-STAT3 signaling, complement,
inflammatory response, and IL2-STAT5 signaling, allograft
rejection signaling pathway. This suggests that the SUMOylation
pattern based on SUMOylation regulatory genes may influence the
immune microenvironment status. Biological mechanisms for the
poor prognosis associated with SUMO-C2 maybe because of the
active immune microenvironment of the SUMO-C1 and the active
stromal microenvironment of the SUMO-C2. SUMO-C1 may
present better antitumor effects and better prognostic survival in
lung adenocarcinoma through high activation of antitumor
immunity and inhibition of the pro-cancer progressive stromal
microenvironment.

3.3 Different SUMOylation patterns are
associated with varying immune
microenvironments

To explore the potential mechanisms by which SUMOylation
patterns regulate the immune microenvironment, we used the
ssGSEA algorithm to calculate the abundance of 24 different
immune cells. A heatmap was used for visualizing the difference
in immune cell infiltration (Figure 4A), and the Wilcoxon rank-
sum test was used for comparing the discrepancy in immune cell
infiltration consistent with SUMO-C1 and SUMO-C2 patterns
(Figure 4B). Notably, SUMO-C1 showed a widespread active
state of immune cells, while SUMO-C2 showed an inactive state
of immune cells. The infiltration of B cells, T cells, T helper cells,
Central Memory T cell (Tcm), Effector memory T cells (Tem),
Follicular helper T cell (TFH), Th17 cells, CD8 T cells, cytotoxic
cells, dendritic cells (DCs), and mast cells were significantly
higher in the SUMO-C1 than SUMO-C2 group. In contrast,
immune cells such as Th2 cells and Treg cells were
significantly activated in SUMO-C2. Thereafter, we calculated
immune cell infiltration levels in lung adenocarcinoma using the
EPIC algorithm and TIMER algorithm to further support the
differences in immune cell infiltration levels and compared the
significance of the differences between the SUMO-C1 and
SUMO-C2 groups using the Wilcoxon rank-sum test. We
found that the SUMO-C1 group exhibited higher levels of
immune cell infiltration, particularly CD8 T cells, which has
been reported to have a killing effect on tumor cells thereby
producing protective immunity against tumors (Supplementary
Figures S3A, S3B). Furthermore, Spearman correlation between
each SUMOylation regulatory gene and immune cell revealed
that CAPN3 was widely associated with various immune cells
such as CD8+T cells (r = 0.32), DCs (r = 0.343), iDCs (r = 0.432),
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Mast cells (r = 0.468), Tcm (r = 0.421), Tem (r = 0.275), TFH (r =
0.291), Th2 cells (r = 0.563), and Treg (r = 0.115), indicating that
CAPN3 among SUMOylation regulatory genes is closely
associated with immune cell infiltration in the tumor

microenvironment of lung adenocarcinoma. Overall, the
immune microenvironment was regulated by SUMOylation
regulatory genes in lung adenocarcinoma mainly by
modulating the levels of immune cells such as CD8+T cells,

FIGURE 4
The tumor microenvironment differs significantly between SUMOylation patterns. (A) The heatmap shows the GSVA scores of 24 immune cells
among two SUMOylation patterns in lung adenocarcinoma. Annotated with Status, Smoking History, Stage, Gender, Age, GEO cohort, and SUMOylation
patterns. Orange is high expression and blue is low expression. (B)Wilcoxon test for differences in GSVA scores of 24 immune cells in two SUMOylation
models. (C) Correlation between 33 SUMOylation regulatory genes and immune infiltrating cells using Spearman analysis. (D) Differences in
oncogenicmatrixmicroenvironment between two SUMOylation patterns. (E) Significantly differential expression of co-inhibitorymolecules between the
two SUMOylation patterns. (F) Differential expression of co-stimulatory molecules and (G) MHC molecules between two SUMOyaltion patterns. (H)
Wilcoxon test for differences in immune scores, stromal scores, and tumor purity between the two SUMOylation models.
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FIGURE 5
Identification of key genes differentially expressed between SUMOylation patterns and characterization of SUMOylation genomic subtypes. (A)
Functional annotation of SUMOylation differential genes by KEGG enrichment analysis. (B) The Protein-Protein Interaction Network (PPI) of key genes
associated with SUMOylation. (C) Differential expression of SUMOylation key genes between lung adenocarcinoma and normal tissue samples. (D)
Prognostic value analysis of SUMOylation key genes for lung adenocarcinoma. (E) CDF curves for unsupervised clustering with K = 2 to 9. (F)
Consensus clustering graphwith K = 3. (G) PCA of SUMOylation genomic subtypes based on key genes transcriptome. (H) Kaplan-Meier curves for overall
survival OS for the three SUMOylation genomic subtypes. (Log-Rank test p = 5.53e-08, p-value less than 0.001 for both comparisons). (I) The heatmap
shows the identification of 3 different genomic subtypes by unsupervised clustering based on 62 SUMOylation-associated key genes. Annotated with
Status, Smoking History, Stage, Gender, Age, SUMOylation patterns, GEO cohort, and genomic subtypes. Red is high expression and blue is low
expression. (J)Multivariate cox analysis indicates that SUMOylation genomic subtype can be an independent prognostic factor for lung adenocarcinoma.
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mast cells, T helper cells, Tcm, Tem, and Th2 cells (Figure 4C;
Supplementary Figures S3A).

The above analysis supports that SUMO-C1 represents a type of
TME with an immune characteristic of tumor suppression.
Nevertheless, SUMO-C2 exhibited predominantly pro-cancer
biological processes, as well as promoted the stromal
microenvironment according to our previous GSVA enrichment
analysis of the Hallmark gene set. Furthermore, we assessed the
enrichment scores for angiogenesis, immune checkpoint, cell cycle
regulation, Pan F TBRS, EMT, and DNA replication using the
ssGSEA method. The ssGSEA results showed pathways that can
promote immune escape such as EMT1, EMT2, and immune
checkpoint pathways were remarkably activated in the SUMO-C2
group (Figure 4D). Moreover, the SUMO-C1 group showed a higher
expression of co-stimulatory and MHC molecules and lower
expression of co-inhibitory molecules (Figures 4E–G), such as
CD274, PDCD1, and LAG3, which are now commonly used as
immunotherapeutic checkpoints in lung adenocarcinoma. Finally,
we assessed the immune score, stroma score, and tumor purity score
using the Estimate package for lung adenocarcinoma expression
data and found that SUMO-C1 had a better immune score as well as
a higher stroma score (Figure 4H), while SUMO-C1 had a lower
tumor purity score, which further explains its association with better
prognosis. Altogether, the above analysis demonstrated that the
SUMO-C2 SUMOylation pattern promoted the development of a
silent anti-tumor immune microenvironment and an active
tumorigenic stromal microenvironment.

3.4 PPI of SUMOylation pattern-associated
genes (SPAGs) and identification of
SUMOylation genomic subtypes

To further explore the underlying biological processes
modulated in different SUMOylation patterns, we identified
906 significant DEGs (|FoldChange|>1.5, FDR<0.05) as
SUMOylation pattern-associated genes (SPAGs) using the R
package limma. These DEGs were also significantly associated
with lung adenocarcinoma prognosis, indicating the critical role
of SUMOylation patterns in dictating prognosis. KEGG
functional annotation showed significant enrichment of
SUMOylation-related genes to biological pathways such as cell
cycle-related processes (cell cycle), cell adhesion (ECM-receptor
interaction), immune activation signaling pathways
(complement and coagulation cascades, IL 17 signaling
pathway) (Figure 5A), while GO functional annotations
revealed enrichment of biological processes such as regulation
of the cell cycle phase transition, cell growth, humoral immune
response, cell-cell junction and response to hypoxia
(Supplementary Figures S4A–C).

Next, we constructed a protein interaction network (PPI,
network type = physical subnetwork, minimum required
interaction score = 0.7) of SPAGs using the STRING database
and calculated the relationship between nodes using the
Cytohubba plugin. We then classified genes with neighboring
nodes ≥5 of 62 genes as key SPAGs and mapped their
interaction (Figure 5B; Supplementary Figure S4D). Of the key
genes, CCNB1 had the most neighboring nodes, followed by

PLK1, BUB1B, CDK1, and BRCA1. It has been recently reported
that the key genes in the PPI network can represent the functional
characteristics of all genes accurately. Differential expression
analysis by the TCGA dataset showed that key genes were
significantly differentially expressed in lung adenocarcinoma
from normal tissue samples (Figure 5C). Meanwhile, key genes
extensively indicated significant prognostic significance, and CBX7,
ITGA8, ADRB2, and CAV1 were significant favorable factors for
lung adenocarcinoma (Figure 5D).

Unsupervised consensus clustering was carried out based on
the identified key SPAGs. Three genomic subtypes were obtained,
namely, gene-T1, gene-T2, and gene-T3 by CDF curve (Figures
5E, F; Supplementary Figure S4E). PCA suggested significant
differences among the three genomic subtypes identified based
on key genes (Figure 5G). Kaplan–Meier survival analysis
indicated that gene-T2 was associated with the worst, gene-T3
with the best, and gene-T1 with the intermediate prognostic
outcome, indicating different clinical courses of the genomic
subtypes (Figure 5H). Moreover, the heatmap revealed
differential expression of the 62 key genes among the three
genomic subtypes (Figure 5I). This is consistent with the
results of the prognostic utility of key genes in lung
adenocarcinoma, as the heatmap showed that CAV1, ADRB2,
CBX7, and ITGAB8 which were favorable factors for lung
adenocarcinoma were remarkably upregulated in gene-T3, and
the remaining risk factors for lung adenocarcinoma were
significantly upregulated in the gene-T2 subtype. We then
combined prognostic features such as age, sex, pathological
stage, and genomic subtype with survival information for
multicox analysis, which revealed that all the above prognostic
features including genomic subtype are independent prognostic
factors in lung adenocarcinoma; gene-T2 vs. gene-T1 (HR = 1.53,
p = 0.003) and gene-T3 vs. gene- T1 (HR = 0.66, p = 0.008)
(Figure 5J). Finally, we determined that SUMOylation regulatory
genes were significantly differentially expressed among the three
genomic subtypes and their expression in the gene-T1 subtype
was intermediate to that in the gene-T2 and gene-T3 subtypes
(Supplementary Figure S4F), indicating that different genomic
subtypes further reflect the differences in the SUMOylation
patterns.

3.5 Calculation and prognostic significance
of the SUMOylation score

We aimed to determine the prognostic value and biological
significance of SUMOylation modification patterns in lung
adenocarcinoma and to develop a SUMOylation pattern-based
prognostic model for the assessment of individual lung
adenocarcinoma patients. For this, we first performed a
univariate cox analysis of the 62 key SPAGs along with
LASSO regression to screen the best variables. Eventually,
eight SUMOylation key genes that were significantly
differentially expressed between normal tissues and tissues in
lung adenocarcinoma and significantly associated with prognosis
in lung adenocarcinoma were screened, and a SUMOylation-
based prognostic signature model was constructed based on the
expression of these genes and their coefficients (Supplementary
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FIGURE 6
Construction of SUMOylation score and validation of prognostic value. (A) LASSO regression coefficients of model genes. (B) Kaplan-Meier curves
for overall survival (OS) in lung adenocarcinoma patients between high- and low-SUMOylation score. (C)Operating characteristic curve for assessing the
predictive performance of SUMOylation score for OS of lung adenocarcinoma, with AUCs of 0.67, 0.68, and 0.69 at 1, 3, and 5 years, respectively. (D)
Multivariate cox analysis indicates that the SUMOylation score can work as an independent prognostic factor for lung adenocarcinoma. (E) The risk
heatmap illustrates the variations in SUMOylation scores, patient deaths, and model gene expression levels. Red is high expression and blue is low
expression. Validation of the prognostic significance of SUMOylation scores in independent datasets GSE31210 (F), GSE37745 (G), GSE50081 (H),
GSE72094 (I). (J) Validation of significant differences in overall survival (OS) between patients with high- and low SUMOylation scores using the TCGA
external dataset. (K) The alluvial map reveals the association between SUMOylation patterns, SUMOylation genomic subtypes, SUMOylation score
groups, and other clinicopathological prognostic features.
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Figures S5A, B). The risk score was calculated formulas follows:
risk score = ExpNDC80*(−0.1024) + ExpORC1*0.0027+
ExpCCNE1*0.0164+ ExpCENPN*0.0127+
ExpCENPL*(−0.0997) + ExpCBX7*(−0.0606) +
ExpCCNB2*0.4661+ ExpADRB2*(−0.0568) (Figure 6A). All
lung adenocarcinoma samples were divided into high-risk and

low-risk groups using the Survival package to calculate the
optimal cut-off values. Survival analysis revealed that patients
with higher scores were significantly associated with worse
prognosis (log-rank p = 2.22e-16) (Figure 6B); the 1-year ROC
AUC was 0.67, 3-year AUC was 0.68, and 5-year AUC was 0.69,
indicating that the risk score based on the SUMOylation model

FIGURE 7
The association of SUMOylation score with tumor microenvironment and clinical characteristics. (A) The Wilcoxon test for significant differences in
SUMOylation scores between the two SUMOylation patterns. (B)Oncogenic matrix microenvironment differences between high- and low-SUMOylation
score. (C) Significant differences in ImmuneScore, StromalScore, ESTIMATEScore, and TumorPurity between different SUMOylation scores. (D) The
correlation between SUMOylation score and immune cell infiltration. (E) Analysis of differential expression of co-inhibitory molecules between
high- and low-SUMOylation score. (F) Comparison of SUMOylation scores between groups with and without immunotherapy response. Prediction of
immunotherapy response in high and low-risk groups in GEO cohort (G) and TCGA cohort (H) based on TIDE algorithm. Association of lung
adenocarcinoma recurrence (I) and smoking history (J) with SUMOylation score.
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had relatively superior prognostic accuracy compared to the vast
array of existing prognostic models (Figure 6C). Multivariate Cox
regression analysis incorporating age, gender, pathological stage,
smoking history, and risk score confirmed that the risk score was
an independent prognostic factor for assessing patient outcomes.
(low vs. high, HR = 0.42 (0.33, 0.54), p < 0.001) (Figure 6D).
ADRB2 and CBX7 expression were significantly negatively
correlated with the risk score (Figure 6E). More deaths were
observed in the high-risk group.

Four datasets, GSE31210 (Figure 6F), GSE37745 (Figure 6G),
GSE50081 (Figure 6H), and GSE72094 (Figure 6I), and the
external dataset TCGA-LUAD (Figure 6J) were used to further
validate the stability and prognostic value of SUMOylation
scores. The results of survival analysis gave
p-values <0.001 for log-rank tests in all data sets, suggesting
that the SUMOylation model risk score can consistently forecast
patient prognostic outcomes; the ROC analysis also showed a
high diagnostic value of the risk score in predicting lung
adenocarcinoma prognosis (Supplementary Figures S5C–G).
Multivariate cox regression analysis of TCGA lung
adenocarcinoma cohort incorporating various prognostic
factors such as age further confirms that the risk score is an
independent risk factor for lung adenocarcinoma (low vs. high,
HR = 0.52 (0.38, 0.71), p < 0.001) (Supplementary Figure S5H).
To better understand the direct relationship between
SUMOylation patterns and genomic subtypes, we constructed
a Sankey diagram and observed that the vast majority of SUMO-
C2 and a small fraction of SUMO-C1 comprise genomic subtype-
T1 and then almost all of them comprise the Low Riskscore
group (Figure 6K).

3.6 Experimental validation for genes of risk
model

To verify the expression levels of model genes, we collected
tumor tissues from 18 pairs of lung adenocarcinoma patients and
the corresponding normal tissues adjacent to the cancer and
performed quantitative real-time PCR. We also analyzed the
expression levels and prognostic value of the model genes
using the TCGA lung adenocarcinoma cohort. NDC80,
CENPL, ORC1, CENPN, CCNE1, and CCNB2 were
significantly upregulated in the TCGA cohort as well as in the
18 pairs of lung adenocarcinoma patient samples, and high
expression was significantly associated with poor prognosis in
lung adenocarcinoma. However, CBX7 and ADRB2 were
significantly downregulated in lung adenocarcinoma tumor
tissues and may serve as favorable prognostic factors for lung
adenocarcinoma (Supplementary Figures S6A–H, p < 0.05).

SUMOylation score indicates immune microenvironment
status and immunotherapy response in lung adenocarcinoma.

Comparison by the Wilcoxon rank-sum test showed that
SUMO-C2 was associated with a higher risk score (Figure 7A),
gene-T1 with an intermediate, gene-T2 with the highest, and gene-
T3 with the lowest risk score (Supplementary Figure S7A), implying
that differences in high and low-risk scores could reflect prognostic
differences attributable to different SUMOylation patterns as well as
different genomic subtypes. To further determine the relationship

between SUMOylation scores and immune infiltration and other
biological processes, the differences in the tumorigenic
microenvironment between the groups with high- and low-risk
scores were investigated. Immune checkpoint, cell cycle
regulators, EMT1, EMT2, the cell cycle, and DNA replication
were significantly active in the high-risk group (Figure 7B).
Assessment of the level of immune infiltration in the Estimate
package revealed significantly lower immune scores and higher
tumor purity in the high-risk than in the low-risk group
(Figure 7C). Moreover, Spearman correlation analysis exhibited a
significant negative correlation between SUMOylation score and
immune score, and a significant positive correlation between
SUMOylation score and tumor purity (Supplementary Figure
S7B), reinforcing the accuracy of the assessment of active
biological processes in different SUMOylation patterns through
risk scores.

Subsequently, Spearman analysis was then used to investigate
the correlation between risk score and different immune cell
subpopulations, and risk score was overall significantly
negatively correlated with the levels of various immune cells.
The risk score was significantly positively correlated with
Th2 cells (r = 0.68) and Treg cells (r = 0.2)., and was
negatively correlated with immune cells such as CD8+T cells
(r = −0.4), Tem (r = −0.33), Tcm (r = −0.39), TFH (r = −0.31),
CD56 (bright) natural killer cells (r = −0.36), DCs (r = −0.31),
(immature Dendritic Cells)iDC (r = −0.4) and mast cells
(r = −0.6). In addition, there was a close correlation between
the degree of infiltration of Th1 cells, CD8+ T cells, T cells, and
cytotoxic cells, as well as that of macrophages and iDCs in lung
adenocarcinoma. (Figure 7D). These findings suggest that
SUMOylation regulatory genes are involved in immune cell
infiltration and immune regulation of lung adenocarcinoma
tumors. Of these, Th2, Treg, and CD8+ T cells, and mast cells
are involved in immune dynamic regulation (Supplementary
Figure S7C). We then assessed immune checkpoint expression
between the high- and low-risk groups to further investigate the
effect of SUMOylation on immunotherapy response and found
that the expression of clinically common immune checkpoint co-
inhibitory molecules such as CD274, PDCD1, CTLA4,
PDCD1LG2, HAVCR2, LAG3, and TIGIT was increased in the
high-risk group (Figure 7E), while co-stimulatory molecules,
such as CD2, CD28, and CD40LG, were decreased in the
high-risk group (Supplementary Figure S7D), indicating that
SUMOylation scores broadly modulate immune checkpoint
expression. In addition, SUMOylation also suppresses the
activation of the immune microenvironment by reducing the
expression of MHC molecules (Supplementary Figure S7E).

A subsequent analysis of the role of SUMOylation patterns on
immunotherapy response using the immunotherapy cohort
reported in the lung cancer dataset GSE126044 indicated that
the responder group (CR/PR) had low-risk scores and the non-
responder group had high-risk scores (Figure 7F), explaining the
worse immunotherapy response in high-risk patients.
Meanwhile, we evaluated the immunotherapy response of lung
adenocarcinoma patients in both high and low SUMOylation
score groups in the GEO cohort (High-risk vs. Low-risk, OR is
1.716, p-value < 0.001, Figure 7G) and TCGA cohort (High-risk
vs. Low-risk, OR is 2.207, p-value < 0.001, Figure 7H) based on
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the TIDE algorithm and indicated that low-risk patients were
more likely to benefit from immunotherapy. In addition to this,
significantly high SUMOylation scores are observed in patients
with recurrent lung adenocarcinoma (Figure 7I), and

significantly high SUMOylation scores are observed in
smokers (Figure 7J), suggesting that SUMOylation scores may
be effective in comprehensively assessing clinical prognostic
factors in patients with lung adenocarcinoma.

FIGURE 8
Drug sensitivity analysis of chemotherapy for lung adenocarcinoma and Nomogram construction. (A) Chemotherapy drug sensitivity analysis in
patients with low SUMOylation score. (B)Chemotherapy drug sensitivity analysis in patients with high SUMOylation score. (C)Construction of Nomogram
by combining independent prognostic features such as smoking history, gender, age, pathological stage, and SUMOylation score. (D) Calibration curves
for evaluating the predictive performance of Nomogram for 1, 3, and 5-year OS in lung adenocarcinoma patients. (E) The AUC for assessing the
accuracy of Nomogram to forecast 1-, 3-, and 5- years overall survival. (F) The AUC for predicting 3-year overall survival for comparing the accuracy of
various prognostic characteristics. (G) Decision Curve Analysis (DCA) shows the efficacy of Nomogram and other prognostic features for clinical
applications.
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3.7 Prediction of chemotherapy drug
sensitivity and construction of nomogram
for lung adenocarcinoma

As the above results have confirmed that SUMOylation leads to
remarkable changes in the tumor microenvironment in lung
adenocarcinoma, therefore, we used the SUMOylation score to
characterize the sensitivity of lung adenocarcinoma patients to
various chemotherapeutic agents to guide the combination
chemotherapy. Based on the mRNA levels in lung
adenocarcinoma tissues, we calculated the IC50 of various
chemotherapeutic agents for lung adenocarcinoma patients in
different SUMOylation score groups using the pRRophetic
package and found that the group with low SUMOylation score
was more sensitive to AKT-inhibitor-VIII, bexarotene, erlotinib,
GDC0941, MK-2206, among others than that with high
SUMOylation score (Figure 8A). In contrast, the high
SUMOylation score group was sensitive to more
chemotherapeutic agents, including A-443654, camptothecin,
CGP-60474, cisplatin, cytarabine, docetaxel, doxorubicin,
elesclomol, paclitaxel, and RO-3306 (Figure 8B). These findings
suggest that SUMOylation scores can accurately reflect significant
biological differences between SUMOylation patterns and also
correlate with clinical prognostic features.

Meanwhile, as we previously illustrated by multivariate Cox
analysis that age, gender, pathological stage, smoking history, and
SUMOylation score all can serve as independent prognostic factors
for lung adenocarcinoma, we combined the above significant
prognostic factors to construct column plots to more accurately
and efficiently predict the overall survival (OS) of individual patients
with lung adenocarcinoma (Figure 8C). Calibration curves showed
that the OS at 1, 3, and 5 years predicted by the nomogram closely
corresponded to the actual OS of lung adenocarcinoma patients
(Figure 8D) and the time-dependent ROC showed high AUC of
0.78, 0.83, and 0.82 for 1-, 3-, and 5- years, respectively. Yang et al.
reported that 0.9≥ AUC>0.8 indicates excellent discrimination
(Shengping and Gilbert, 2017), indicating that the developed
nomogram has a remarkably prognostic performance (Figure 8E).
Furthermore, a comparison of the predictive performance of
multiple clinical prognostic features revealed that the nomogram
offered the best predictive utility relative to any other clinical feature
as determined by the ROC curve (Figure 8F) as well as the DCA
decision curve (Figure 8G). Finally, to further validate the accuracy
of the multifactorial regression model Nomogram, we evaluated the
AUC of the ROC curves of Nomogram using three independent lung
adenocarcinoma cohorts and the 5-year AUC values were 0.79, 0.81,
and 0.89, respectively (Supplementary Figures S7F–H7). Validation
in three independent lung adenocarcinoma cohorts supports that
the accuracy of our Nomogram is significantly better than a large
number of reported prognostic models for lung adenocarcinoma
(Mo et al., 2020; Song et al., 2020; Chen et al., 2021).

4 Discussion

SUMOylation performs a critical role in various biological
processes encompassing immune regulation (K et al., 2021). Due
to the extremely complex TME and immune background of lung

adenocarcinoma, the modulatory role of SUMOylation on the TME
of lung adenocarcinoma, especially on immune infiltration, is still
poorly understood. Current studies are limited to individual
SUMOylation regulatory genes, and the regulation of the TME
mediated by integrated SUMOylation regulatory genes has not
been investigated. Therefore, the identification of different
SUMOylation patterns in the TME is valuable in further
understanding the effect of SUMOylation on tumor immune
responses in lung adenocarcinoma.

Previous studies have shown that regulation of the TME has a
critical role in tumor progression and immunotherapeutic efficacy
(Goliwas et al., 2021). In this study, we confirmed the tight
correlation of SUMOylation regulatory genes and identified two
distinct SUMOylation patterns associated with significant
differences in the TME in terms of differential activation of
oncogenic pathways and immune infiltration. Park S et al.
classified Non-small cell lung cancer (NSCLC) into three
different immunophenotypes based on tumor-infiltrating
lymphocytes and immune checkpoint treatment response.
Assessment of immune phenotypes is useful as a guide for
determining prognosis as well as immunotherapy (Park et al.,
2022). The SUMOylation patterns we identified also
corresponded to distinct immunophenotypes. SUMO-C1
corresponded to a tumor immunoinflammatory phenotype with
better overall survival, significant activation of immune pathways
such as the IL2, inflammatory, complement, and allograft rejection
pathway, and increased infiltration levels of anti-tumor immune
cells. IL2 promotes not only the proliferation of cytotoxic T
lymphocytes (CTLs) and natural killer cells but also the
differentiation of CTLs to effector T cells (Borrelli et al., 2018).
Meanwhile, CD8+T cells, Tem, cytotoxic cells, and Th17 cells were
reported to promote anti-tumor immune processes (Deng et al.,
2018). SUMO-C2 was consistent with reduced levels of immune
infiltration and a microenvironment that promotes immune escape,
corresponding to an immune-desert phenotype. Furthermore, a
remarkable activation of the PI3K-AKT-mTOR signaling
pathway, the cell cycle, EMT substrates, and oncogenic pathways
suggested that SUMO-C2 also exhibited features of an immune
exclusion phenotype. Notably, the levels of infiltration of Th2 cells,
Treg cells, CD8+ T cells, and Th17 cells varied with different
SUMOylation patterns and SUMOylation scores. SUMOylation
regulatory genes are diverse in their regulation of immune cells,
and the regulatory mechanism of SUMOylation regulatory genes on
lung adenocarcinoma immune cells needs to be further explored.
Therefore, the identification of SUMOylation patterns could help
determine immunotherapy response and patient prognoses.

Notably, SUMO-C2 showed significant activation of PI3K-
AKT-mTOR pathway in TME, and excessive activation of the
PI3K-AKT-mTOR pathway would lead to a combined phenotype
of immunodeficiency and immune dysregulation (Nunes-Santos
et al., 2019), which is critical for maintaining the
immunosuppressive function of Tregs and (Myeloid-derived
suppressor cells)MDSCs, while inhibition of the PI3K-AKT-
mTOR pathway can reduce the expression of immunosuppressive
factors as well as immune checkpoint ligands (O’Donnell et al.,
2018). Furthermore, we found that SUMO-C2 was associated with
the increased activation of the EMT pathway and increased
expression of multiple immune checkpoint molecules such as
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PD1. Jiang Y et al. showed that the overactivation of EMT was
associated with the activation of different immune checkpoint
molecules and induced tumor immune escape (Jiang and Zhan,
2020). Importantly, targeted inhibition of the PI3K-AKT-mTOR
pathway maintains the antitumor immune function of CD8+ T cells
(Patton et al., 2006), while targeted inhibition of EMT pathways has
been shown to remodel the TME and restore the antitumor
microenvironment (Erin et al., 2020; Kumagai et al., 2020),
which suggests that targeted inhibition of the above pathways
combined with immunotherapy may be a more reasonable
treatment option for patients with the SUMO-C2 SUMOylation
pattern.

Further, we predicted potential target drugs for high
SUMOylation scores. AKT inhibitors such as AKT-inhibitor-VIII,
MK-2206 (O’Donnell et al., 2018), A-443654 (Han et al., 2007), and
PI3K inhibitors such as GDC-0941 (Haagensen et al., 2012) can
inhibit the PI3K-AKT-mTOR signaling pathway, thereby inhibiting
tumor progression. Meanwhile, CGP-60474 (Han et al., 2018), RO-
3306 (Kojima et al., 2009), and doxorubicin (Jin et al., 2020) inhibit
the cell cycle and DNA replication to suppress tumor progression.
However, the relationship between these drugs and SUMOylation
and their role in lung adenocarcinoma progression is not yet known.
In addition, camptothecin (Sanchez-Alcazar et al., 2003), bexarotene
(Lowe and Plosker, 2000), cisplatin (Ghosh, 2019), and paclitaxel
(Wang et al., 2000) can also exert apoptosis-inducing antitumor
effects, and docetaxel (Borghaei et al., 2021) has been widely used in
combination with nivolumab in the treatment of NSCLC. This
suggests that the SUMOylation model and score can better guide
chemotherapy as well as immunotherapy for lung adenocarcinoma.

Based on two SUMOylation patterns that were associated with
different TMEs, due to the complexity of SUMOylation pattern
SUMO-C2 immunophenotype, we mined SUMOylation pattern-
related genes (SPAGs) and further determined the genomic subtype
gene-T1 corresponding to immune exclusion phenotype, which
would further define SUMOylation patterns as well as TME
immune phenotypes. A m6A methylation modification score can
accurately determine colorectal cancer TME and immune
transcripts. High m6A scores are tightly associated with worse
prognosis, inferior levels of antitumor immune infiltration, and
poorer response to immunotherapy (Chong et al., 2021). To
determine the TME status and more precisely guide the
treatment of individual patients, we present a highly sensitive
prognostic model based on SUMOylation scoring, which can
serve as a prognostic biomarker for lung adenocarcinoma.
Noteworthy, a large number of scoring systems have been
previously reported for prognostic assessment of lung
adenocarcinoma, Unlike the scoring systems constructed with the
DNA repair-related prognostic signature (Chang and Lai, 2019), the
cell cycle-related prognostic signature (Chen et al., 2021), immune-
related signature (Song et al., 2020), and the angiogenesis-related
signature (Qing et al., 2022). Our model has relatively superior
predictive performance compared to other signature models and can
be further used as a complement to clinical factors. Interestingly,
SUMOylation scores were significantly negatively correlated with
immune infiltration. The immunoinflammatory phenotype
consistent with SUMO-C1 exhibited a lower SUMOylation score,
while the immune-desert phenotype consistent with SUMO-C2 or
gene-T3 showed the highest SUMOylation score. This implies that

SUMOylation can modulate the TME as well as the immune
background of lung adenocarcinoma, thus regulating the
progression and prognosis of lung adenocarcinoma patients.

In summary, our study identified two different SUMOylation
patterns mapping different immune phenotypes and TMEs,
establishing that SUMOylation can regulate the lung
adenocarcinoma TME and the infiltration of immune cells. The
SUMOylation score we constructed can facilitate a more accurate
assessment of the TME in lung adenocarcinoma, and the nomogram
based on it has good clinical utility. As samples with high
SUMOylation scores showed stronger immunosuppression and
immune escape, as well as promoted the activation of pro-cancer
pathways, compared with low scores, we further explored two
SUMOylation patterns of potential targeting agents to guide
chemical combination therapy. However, our study is limited in
that we relied on a few immunotherapy response cohorts with
NSCLC to confirm our findings, hence, our findings must be
validated in larger cohorts. Furthermore, the clinical utility of the
SUMOylation score and the constructed nomogram needs to be
validated in clinical settings. In addition, the characterization of the
underlying mechanisms by which SUMOylation regulates the tumor
microenvironment and immune background in lung
adenocarcinoma and other tumors warrants further research.

5 Conclusion

The SUMOylation patterns can well dictate the tumor
microenvironment features, particularly immune cell infiltration
status, in lung adenocarcinoma. The SUMOylaiton score is
indicative of the relationship between SUMOylation and immune
cell crosstalk and has remarkable prognostic value, and can be used
to predict immunotherapy and chemotherapy response in lung
adenocarcinoma. In conclusion, the SUMOylation model and
score have a high value for determining the tumor
microenvironment status and prognosis prediction.
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SUPPLEMENTARY FIGURE S1
Mutual association and functional annotation of 33 SUMOylation regulatory
genes. GO functional annotation (A-B) and KEGG functional annotation (C)
of SUMOylarion regulatory genes. (D) Analysis of the correlation between
SUMOylation regulatory genes in lung adenocarcinoma. (E) Principal
component analysis of SUMOylation regulatory gene expression profiles
based on 57 paired lung adenocarcinoma and normal samples. (F) Co-

mutation between regulatory genes of SUMOylation. (G) Multivariate cox
analysis for prognostic significance among SUMOylation regulatory genes.

SUPPLEMENTARY FIGURE S2
Unsupervised clustering based on SUMOylation regulatory genes and
differences in biological pathways between clusters. (A) Consensus
clustering graph for K = 3 to 6. (B) The heatmap shows the mRNA
expression levels of SUMOylation regulatory genes in two SUMOylation
patterns. (C) Comparison of HALLMARK biological pathways between two
SUMOylation patterns.

SUPPLEMENTARY FIGURE S3
Relationship between SUMOylation regulatory genes with their patterns and
immune microenvironment. Immune cell infiltration levels between
SUMOylation patterns were assessed by (A) EPIC algorithm and (B)TIMER
algorithm. (C) Correlation between SUMOylation regulatory genes and
immune infiltrating cells.

SUPPLEMENTARY FIGURE S4
GO functional annotation and key genes analysis. Functional annotation of
906 SUMOylation-associated differential genes GO, (A) BP, (B) CC, (C) MF.
SUMOylation-related differential genes are regarded as SUMOylation
Pattern-Related Genes (SPAGs). (D) Computation of key genes in SPAGs by
Cytohubba (Degree≥5). (E) Consensus clustering graph with K = 2,4–9. (F)
Comparison of significant differences in SUMOylation regulatory gene
expression among three SUMOylation genomic subtypes.

SUPPLEMENTARY FIGURE S5
Construction and validation of SUMOylation score. LASSO regression
analysis of 61 significantly prognostically relevant key genes , (A,B) partial
Likelihood Deviance = 13.77, SE = 0.1393, Lambda = 0.01725. Validation of
the accuracy of SUMOylation scores to predict OS at 1-, 3-, and 5-year in the
independent datasets GSE31210 (C), GSE37745 (D), GSE50081 (E),
GSE72094 (F), and the external validation set TCGA-LUAD (G), respectively.
(H) Multivariate cox analysis based on prognostic characteristics such as
SUMOylation score in the TCGA-LUAD cohort.

SUPPLEMENTARY FIGURE S6
Validation for model genes. mRNA expression differential analysis, survival
analysis, and quantitative Real-time PCR for ADRB2, (A) CBX7 (B),
CCNB2 (C), CCNE1 (D), CENPL (E), ORC1 (F), NDC80 (G), and CENPN (H).
(*p < 0.05, **p < 0.01).

SUPPLEMENTARY FIGURE S7
Relationship between SUMOylation score and immune
microenvironment with other prognostic signatures. (A) Comparison of
risk scores among genomic subtypes of SUMOylation. (B) Correlation
of SUMOylation score with immune score and tumor purity. (C)
Comparison of 24 immune cell GSVA scores between high- and low-
SUMOylation scores. Comparison of co-stimulatory molecules (D) and
MHC molecules (E) expression levels between high- and low-
SUMOylation scores. Survival analysis and ROC of multivariate
regression model Nomogram in independent lung adenocarcinoma
cohorts with GSE31210(F), GSE50081 (G), GSE72094 (H), the 5-year
AUCs were 0.79, 0.77, and 0.89, respectively.
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