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Background: Transcutaneous auricular vagus nerve stimulation (taVNS) has recently 
been explored for the treatment of Disorders of consciousness (DoC) caused by 
traumatic brain injury. The evidence of taVNS during the consciousness recovery 
has been recently reported. However, the mechanism of taVNS in the recovery of 
consciousness is not clear. This study attempts to investigate the effectiveness of taVNS 
in DoC by means of Coma Recovery Scale-Revised (CRS-R), Magnetic resonance 
imaging (MRI), Electrophysiology (EEG), and Single-molecular array (Simoa).

Methods/design: Nighty patients with DoC acquired brain injury are randomized 
into one of three groups receiving sham taVNS or active taVNS (just left and left or 
right), respectively. Each of the three groups will experience a 40 days cycle (every 
10 days for a small period, baseline 2 weeks, intervention 2 weeks, 40 min per day, 
5 days per week, then no intervention for 2 weeks, intervention 2 weeks, 40 min per 
day, and 5 days per week). Primary outcomes (CRS-R) will be  recorded five times 
during every period. Secondary outcomes will be recorded at the first and at the last 
period [MRI, EEG, Phosphorylated tau (P-tau), and Neurofilament light chain (NFL)]. 
We will take notes the adverse events and untoward effects during all cycles.

Discussion: Transcutaneous auricular vagus nerve stimulation as a painless, non-
invasive, easily applied, and effective therapy was applied for treatment of patients 
with depression and epilepsy several decades ago. Recent progress showed that 
taVNS has behavioral effects in the consciousness recovery. However, there is 
no clinical evidence to support the effects of taVNS on brain activity. Therefore, 
we  will design a randomized controlled trial to evaluate the effectiveness and 
safety of taVNS therapy for DoC, and explore neural anatomy correlated to 
taVNS during the consciousness recovery. Finally, this protocol also tests some 
biomarkers along with the recovery of consciousness.

Clinical Trial Registration: Chinese Clinical Trial Registry, ChiCTR2100045161. 
Registered on 9 April 2021.
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1. Introduction

Acquired brain injury is often known as a “silent epidemic 
disease,” which is a general term for all brain injuries (1, 2). Acquired 
brain injury includes infection, hypoxia, and trauma, which can cause 
systemic or focal injury, and a series of pathophysiological changes 
(such as brain hematoma, brain contusion, and diffuse axonal injury). 
There are about 1.7 million Traumatic brain injury (TBI) events occur 
every year in the United States (3). But in China, there are no accurate 
epidemiological investigation data. The survival rate of Disorders of 
consciousness (DoC) patients after severe brain injury has been 
significantly increased due to advanced medical treatment and 
healthcare (4). However, it caused the heavy economic burden and 
great mental stress for family members. Currently, early assessment 
and health management of DoC are facing a great challenge because 
of its unclear pathophysiological nature. Understanding the biological 
basis of DoC would have important implication for the development 
of diagnostic and therapeutic strategies.

Dysfunction of the brain in certain areas, combined with the 
disruption of the neural connections between and within neural 
networks, can lead to DoC (4). DoC patients are in coma kept closed 
eyes, lack of arousal, and awareness (5), and do not respond to 
environment. Unresponsive wakefulness syndrome (UWS) of DoC 
(previously called Vegetative State, VS) is defined by some intermittent 
spontaneous arousal observed after tactile, auditory, or painful 
stimulation (1), but these DoC patients in no self-consciousness 
cannot consciously interact with their surrounding environment (6). 
Minimally consciousness state (MCS) patients have arousal and the 
ability to consciously interact with the environment, such as visual 
tracking, object localization; reaching, or instruction following (6). 
These changes are unstable but reproducible. MCS can be  further 
divided into minus (MCS−) or plus (MCS+) (7). While consciousness 
is fluctuating in MCS, it is still possible to have the residual 
consciousness behavior can be monitored by careful assessment.

To date, there is no single effective way to predict, evaluate, and 
intervene in early severe brain injury (2), Therefore, exploring accurate 
assessment methods and effective intervention strategies for DoC are 
urgently required in this emerging fields. Transcutaneous auricular 
vagus nerve stimulation (taVNS) is a potential intervention in 
treatment of DoC. Certain visceral representative areas of the ear 
region produce brainstem-to-central neural modulation effects similar 
to invasive vagus and neural stimulation (8, 9). Because taVNS is 
non-invasive and has no need for surgical condition (8, 9), low cost 
and easy to perform for DoC patients in families or communities. It 
has been shown that taVNS can produce a beneficial effect in DoC (4), 
but the underlying mechanism is unclear.

The auricular branch of the vagus nerve is the source of sensory 
information to the ear. The external ear’s central area contains sensory 
fibers, which are situated close to the Cymba Concha section of the 
auricle. The auricular vagus nerve’s afferent neurons go to the inferior 
vagal ganglion, and then the impulse is sent to the solitary tract nucleus 
in the brainstem. The solitary tract is the primary receptor of sensory 
information from different branches of the vagus nerve, which then 
sends out various signals to other parts of the body, such as the locus 
coeruleus. This area of the reticular activating system is a major source 
of adrenaline-inducing projections that reach the cortex, subcortex, 
and brainstem. It appears that the activation of the locus coeruleus may 
be the cause of many of the observed therapeutic outcomes from VNS 

and taVNS (10). The firing of neurons in the locus coeruleus causes a 
massive release of norepinephrine in the thalamus and hippocampus, 
which is an essential part of the noradrenergic pathway and is crucial 
for alertness, arousal, and the fight-or-flight reaction (11). The vagus 
nerve in humans stimulates metabolic processes in the forebrain, 
thalamus, and reticular formation, and it also regulates activity in the 
brainstem, as well as the nucleus of the solitary tract (NTS), dorsal 
raphe nuclei, amygdala, and hippocampus (11).

Based on our current understanding of taVNS related to the 
awareness-related neural pathways, vagal cortical pathway model has 
been proposed (4). The vagal cortical pathway model through six 
distinct strategies to influence brain activity and consciousness: 
boosting the excitability of the ascending reticular activating system, 
activating the thalamus, reconstructing the cortical striatal-thalamic-
cortical network, establishing negative connections between external 
and default mode networks by stimulating salience networks, 
stimulating the norepinephrine pathway to raise external network 
activity and connectivity, and raising excitability within the default 
mode network through the serotonin pathway (4). This model was 
constructed to investigate the mechanism of action that taVNS exerts 
neural modulatory effects as therapeutic intervention in the 
management of DoC. Therefore, the vagal cortical pathway model 
should be demonstrated in prospective randomized controlled clinical 
trials. This current study, with its randomly chosen participants, seeks 
to (1) gauge the effectiveness of taVNS in DoC; (2) confirm or refute 
vagal cortical pathway model (10, 12, 13); and (3) identify biomarkers 
for diagnosis and targets for therapeutic intervention (2).

2. Methods

2.1. Study design

Ninety patients suffering from DoC will be  chosen for this 
prospective, randomized trial which involves double-blinded 
assessments. The participants will be  randomly divided into the 
intervention and control groups with an even distribution. The control 
group will be  administered ear lobe therapy, in contrast to the 
intervention group which will receive the active taVNS. We  will 
stimulate left cymba conchae for one group, the second group subjects 
will be stimulated left cymba 20 min and right cymba 20 min once a 
day. Because we have not seen the side effects from the clinical practice, 
and the right vagus nerves modulate the left hemisphere. This study 
will last 40 days and a half-year observation period will follow. CRS-R 
behavioral improvement will be monitored five times every 10 days. At 
the beginning and the end of the fourth period, the following tests will 
be carried out: EEG, MRI, and measurement of certain biomarkers 
related to brain injuries. All side effects during each treatment will 
be documented. This study will be implemented in Shanghai Yongci 
Hospital, and rehabilitation therapists are held accountable for 
following the standard operating procedure and evaluating the trial’s 
progress at all clinical sites. This trial is illustrated in Figure 1.

2.2. Participants and recruitment

Participants will be recruited from the neurologic care unit. The 
study will be advertised at the bedside between April 2021 and December 
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2022. Researchers will select potential candidates by reviewing their 
medical records in the Computerized Patient Record System (CPRS) and 
communicate the details of this trial to their families. Following the 
agreement of the participants’ guardians, a neurologist will review them 
based on the eligibility criteria. Those who meet the criteria have been 
invited to join the experiment and must go through a neurological 
examination before being evaluated for rehabilitation. All study 
participants must give permission by their family members.

Patients who meet the following criteria will be deemed eligible for 
the trial: (1) age > 18 years, onset >28 days; (2) patients were assessed 
by using CRS-R (five times) as DoC (UWS, MCS−, and MCS+); (3) 
patients had not received central stimulants drugs within 48 h before 
enrollment; (4) no neuromuscular blockers were applied within 24 h 
prior to enrollment; and (5) no facial or ear pain, no recent ear-related 
injuries, no metallic prosthetics, and no pregnancy. Patients who meet 
the following criteria will be excluded from the trial: (1) personal or 
familial history of seizures and history of cardiovascular disease, with 
developmental neurological or psychiatric illness history; (2) untreated 
brain edema; (3) metal implants in the body; (4) unstable vital signs; 
and (5) contraindications: such as claustrophobia.

2.3. Sample size

The main outcome index of this study is the CRS-R scale score, 
which is set as a paired experiment count, the sample estimation 
formula is as follow:

  
n

Z Z
=

+( ) ∗α β σ

δ
/2

2 2

2

According to the results of previous studies (4), the estimated 
difference standard deviation is 15, and the difference is 10, set 
two-sided = 0.05, and the grasp degree is 90%. According to the sample 
size calculation formula, 24 subjects were needed. Considering the 
loss of visits and refusal, at least 30 subjects were needed. Therefore, 

30 VS/UWS and MCS patients will be randomly selected for each 
sample group, with a total sample size of 90.

2.4. Randomization

The study will utilize block randomization. The participants will 
be classified into either the “MCS group” or the “UWS/VS group.” All 
subjects will be randomly divided into the intervention group and 
control group in a 1:1:1 ratio. To ensure impartiality, a random 
number will be used to produce a random allocation order, this task 
will be handled by a person who is not involved in the trial. The order 
of random allocation will remain undisclosed to those assessing the 
outcomes and the statistician. After evaluating the baseline 
information of the suitable participants, their healthcare personals and 
therapists (including acupuncturists and cognitive therapists) will not 
know patients random number assigned.

2.5. Trail protocol

Ninety patients will undergo two sessions 10 days apart, with 
CRS-R and EEG performed before and after VNS. The active session 
will stimulate the left or right cymba conchae and inner tragus (TENS-
200A, SN number: E200A16A000144, the B mode type; stimulation 
parameters: output pulse width degree of 200us, 20 Hz output 7 s, 4 Hz 
output, and 3 s alternate cycle output). The taVNS stimulator will 
be monitored according to patients’ response. The sham stimulation 
will be  applied over the earlobe. We  expect behavioral and EEG 
metrics to be improved in a majority of patients (See Figure 2).

2.6. Follow-up

The clinical trial concluded 3 months ago and since then, 
behavioral scale data have been gathered at regular intervals of 3, 

FIGURE 1

Flowchart of the study.
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6, and 12 months. For eligible subjects, the MRI/EEG will 
be  performed, and blood samples will be  collected for target 
protein determination.

2.7. Blinding

The trial has been designed to be  double-blind; thus, an 
external party that is unaffiliated with the experiment will monitor 
and oversee the execution of the blinding protocol, with the 
random numbers placed in a sealed envelope. Evaluators are not 
involved in the process of recruiting and managing patients, while 
other investigators, operators, and statisticians act on their own. 
Prior to the conclusion of the statistical analysis, unblinding is 
done to counteract the analyst’s potential subjectivity in data 
analysis; meantime, the analyst knew that the patients have been 
split into three groups, but was unaware of which one is the 
intervention group. Following the statistical study, the second step 
of unblinding is executed to identify which group is the 
treatment group.

2.8. Ethics issues

The Ethics Committee of Hangzhou Normal University [NO: 
(20190083)] and Shanghai Yongci Hospital [No: (YCYY-20211021-
003) have both given the green light for the study protocol and consent 
forms, respectively]. We  will ensure that we  have the approval of 
family members of subjects before proceeding.

2.9. Baseline data

This study will collect descriptive data including gender, age, 
onset, weight, etiology etc. before randomization. The CRS-R was 
used to evaluate DoC’s consciousness level, and this will be applied 
initially to check if the three groups are the same prior to 
the intervention.

2.10. Outcome measures

The primary outcome for this study, coma recovery as measured by 
the Coma Recovery Scale-Revised (CRS-R), will be assessed at five time 
points for each period, ranging from the first to the fourth. This data 
will be used to determine the efficacy of the intervention being studied. 
The secondary outcomes of this study will be measured at both the 
baseline and the end of the fourth week of the study. Specifically, EEG, 
MRI, P-tau, and NFL will be used to measure these outcomes. These 
measurements will provide valuable insight into the effects of the study 
and help to further understand the results. Any detrimental outcomes 
or side effects will be noted during the course of the treatment.

2.11. Primary outcomes

2.11.1. Coma recovery scale-revised
The CRS-R is used to measure the progress of individuals suffering 

from DoC (UWS,MCS−, and MCS+) (7). The CRS-R is made up of 
23 components organized into six sections that evaluate auditory, 

FIGURE 2

The taVNS stimulation protocol.
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visual, motor, oromotor, communication, and arousal functions. 
Scores that are higher indicate conscious-related behavior, while lower 
scores signify reflexive activity. The evaluation of performance is 
dependent on the occurrence or lack of the specified action in 
response to standard prompts (14).

2.12. Secondary outcomes

2.12.1. Electrophysiology
The benchmark for assessing levels of consciousness is the CRS-R 

(15, 16), whereas EEG is a crucial diagnostic and prognostic tool for 
patients with DoC (17). Recent advancements in the field have enabled 
researchers to develop feature-based measures like spectral power 
analysis, functional connectivity, and complexity measures, for the 
purpose of diagnosing and predicting outcomes (18–20). Despite this, 
their use to assess the efficacy of treatments has not been implemented 
(More EEG details are shown in Supplementary material). In this 
study, we would analyze spectral power analysis mostly to identify an 
improvement on EEG (such as alpha power) (17).

2.12.2. Magnetic resonance imaging
In this study, rest Fmri research must always include a brainstem 

assessment in order to verify the Vagal Cortical Pathways model’s 
pathways. This can be confidently relied upon as a guarantee of quality 
in taVNS studies, as it clearly demonstrates the stimulation of the 
vagus nerve (4). Furthermore, subcortical regions like the thalamus 
and striatum should be taken into account. Brain connectivity can 
be estimated by utilizing the thalamus, frontal lateral cortex, anterior 
cingulate cortex, insula, and posterior cingulate cortex as seed regions 
in Fmri studies. Moreover, measuring brain activity during tasks 
should be the preferred approach (21, 22). In severe TBI, an increase 
in fractional anisotropy (FA) on the initial postinjury diffusion tensor 
imaging (DTI) was associated with a favorable outcome, and these 
results suggest that it is secondary to axonal regrowth during later 
recovery. A variety of other cognitive and functional outcomes in mild 
to severe TBI have been correlated to DTI (23). Finally, DTI-FA 
should be analyzed in our study (More MRI details are shown in 
Supplementary material).

2.12.3. Single-molecule Array
The peripheral blood will be  taken regularly according to the 

experimental protocol, imaging samples will be selected, and the target 
protein determination will be performed using Simoa HD-1 (Single-
Molecule Array Analyzer), known as the digital ELISA with more than 
1,000 times higher sensitivity than conventional ELISA (24).

The enrolled subjects will be collected peripheral venous blood 
before and after the taVNS intervention. Samples with obvious 
imaging effects will be selected, and the target protein (p-tau, NFL) 
will be determined using Simoa HD-1 Analyzer to explore whether 
the target protein levels changed before and after taVNS intervention 
and whether this change is correlated with consciousness (25).

2.13. Statistical analysis

Main statistical analyses will be performed at the individual and 
group levels (pre vs. post, treatment vs. sham) (26). To examine the 

differences between the groups, we shall employ the t-test or Mann–
Whitney test for continuous variables and the Pearson Chi-squared or 
Fisher’s exact test for discrete values. If a statistically significant result 
appears, the inequality factors will be  considered as potential 
confounding factors in the final analysis of effectiveness. To account for 
any potential external influences, linear models or linear regression will 
be  implemented on continuous dependent variables and logistic 
regression models on categorical dependent variables. The Chi-square 
test or Fisher’s exact test will be employed to document and assess 
unfavorable events (26). We will test outcomes on behavior (diagnosis, 
CRS-R score) and brain data (MRI/EEG). The proportion of responders 
and the effect size of treatment (r, Cohen’s d) will be calculated. We will 
use t-tests, Chi-square tests, ANOVA (for normally distributed data), 
and Wilcoxon test (for non-ordinal data), and mixed-effect regression 
models, depending on the tested outcomes. EEG and MRI analysis will 
be evaluated using SPM12 software1 and EEGLAB2 implemented in 
MATLAB 9.5 (MathWorks, Natick, MA, United States), respectively. All 
other statistical analyses will be conducted in SPSS software (version 
25). All data will be adjusted to account for multiple comparisons and 
considered statistically significant if the value of p is lower than 0.05.

3. Discussion

To date, no intervention strategy could provide evidence-based 
grade I  evidence for patients with DoC patients (27). In 2018, 
we reported the effectiveness of peripheral sensory stimulation in 
patients with consciousness disorders (28). Vagus nerve stimulation 
is an important part of modern acupuncture and sensory stimulation. 
In our study, we observed behavioral improvement and brain activity 
in patients receiving sensory stimulation intervention (28). New 
investigations have demonstrated that stimulating the vagus nerve has 
an effect on DoC (11, 29–31). Despite this, the manner in which vagus 
nerve stimulation influences consciousness remains unclear.

Evidence has shown that there are three important structural 
bases for consciousness: the brainstem ascending reticular activation 
system (ARAS) (32), the central thalamus (33), and the posterior 
cingulate cortex (4). In addition, some brain networks are equally 
important for the recovery of consciousness, and understanding these 
brain neural correlates is critical for understanding the mechanism of 
action of taVNS. These neural networks include the default mode 
(DMN) (34), external parietal (ExN) (35), and salience network (SN) 
(36, 37). To better understand the mechanism of taVNS, the 
connection between these neural networks and brain structure must 
be  clarified. Based on the central thalamus (lamina nucleus and 
related para-nucleus) and its main connection to the striatum and 
frontal cortex, the Mesocircuit model has been suggested as a potential 
explanation for the return of consciousness following severe 
head trauma (38, 39). Under this hypothesis, striatal dysfunction 
suppresses the central thalamic excitability state, which, in turn, 
results in a disruption of its excitatory cortical projection, and 
ultimately led to the DoC (4). The model states that the striatum 
suppresses the pallidus, which, in turn, suppresses the thalamus and 

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

2 https://sccn.ucsd.edu/eeglab/ressources.php
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pedunculopontine nucleus, and the striatum is sensitive to hypoxia, 
resulting in inhibition of the thalamus (4). It further disrupted the 
loop and exacerbated the inhibitory state (4). PET glucose metabolism 
showed significantly higher levels of the DoC medial pallidum 
compared to healthy subjects and lower levels in the central thalamus 
(4). Additionally, DoC patients showed a marked difference in the 
fractional anisotropy between the striatum and the pallidum in the 
left hemisphere compared to healthy controls (4). Moreover, the 
central loop model incorporates possible mechanisms of various 
intervention strategies that can explain the potential neuron 
conduction pathways to prevent DoC (8, 24, 40–45).

The goal of this protocol is to examine the consequences and 
operational aspects of taVNS in individuals suffering from DoC. The 
double-blind test design was implemented to corroborate the test 
outcomes. Additionally, an array of evaluation indexes including the 
CRS-R, EEG, MRI, and chemicals were employed to accurately and 
objectively gauge any alterations in the patient’s consciousness level 
(46). Ultimately, new medical data on the application of taVNS in 
DoC patients will be available.

Trial status

The trial is anticipated to conclude by December 2023. Enrollment 
of participants commenced in April 2021.This protocol has a version 
number of ChiCTR2100045161.
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