149 research outputs found

    Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells

    Get PDF
    For the first time, the TiO2 nanorod arrays have been prepared on ITO substrates at room temperature by dc reactive magnetron sputtering technique. These TiO2 nanorods have a preferred orientation along the (220) direction and are perpendicular to the ITO substrate. Both the X-ray diffraction and Raman scattering measurements show that the highly ordered TiO2 nanorod arrays have an anatase crystal structure. The diameter of the nanorod varies from 30 nm to 100 nm and the nanorod length can be varied from several hundred nanometers to several micrometers depending on the deposition time. The TiO2 nanorod arrays with about 3 micrometers length have been used as an electrode for dye-sensitized solar cell (DSSC). Short-circuit photocurrent density, open-circuit voltage, fill factor and light-to-electricity conversion efficiency at 100 mW/cm2 light intensity are estimated to be 12.76 mA/cm2, 0.65 V, 0.63 and 5.25%, respectively, for the DSSC made of the TiO2 nanorods.SFRH/BSAB/862/2008, FC

    Interaction-free, single-pixel quantum imaging with undetected photons

    Full text link
    A typical imaging scenario requires three basic ingredients: 1. a light source that emits light, which in turn interacts and scatters off the object of interest; 2. detection of the light being scattered from the object and 3. a detector with spatial resolution. These indispensable ingredients in typical imaging scenarios may limit their applicability in the imaging of biological or other sensitive specimens due to unavailable photon-starved detection capabilities and inevitable damage induced by interaction. Here, we propose and experimentally realize a quantum imaging protocol that alleviates all three requirements. By embedding a single-photon Michelson interferometer into a nonlinear interferometer based on induced coherence and harnessing single-pixel imaging technique, we demonstrate interaction-free, single-pixel quantum imaging of a structured object with undetected photons. Thereby, we push the capability of quantum imaging to the extreme point in which no interaction is required between object and photons and the detection requirement is greatly reduced. Our work paves the path for applications in characterizing delicate samples with single-pixel imaging at silicon-detectable wavelengths

    Model Predictive Control of PMSG-Based Wind Turbines for Frequency Regulation in an Isolated Grid

    Get PDF

    Gain scheduled torque compensation of PMSG-based wind turbine for frequency regulation in an isolated grid

    Get PDF
    Frequency stability in an isolated grid can be easily impacted by sudden load or wind speed changes. Many frequency regulation techniques are utilized to solve this problem. However, there are only few studies designing torque compensation controllers based on power performances in different Speed Parts. It is a major challenge for a wind turbine generator (WTG) to achieve the satisfactory compensation performance in different Speed Parts. To tackle this challenge, this paper proposes a gain scheduled torque compensation strategy for permanent magnet synchronous generator (PMSG) based wind turbines. Our main idea is to improve the anti-disturbance ability for frequency regulation by compensating torque based on WTG speed Parts. To achieve higher power reserve in each Speed Part, an enhanced deloading method of WTG is proposed. We develop a new small-signal dynamic model through analyzing the steady-state performances of deloaded WTG in the whole range of wind speed. Subsequently, H∞ theory is leveraged in designing the gain scheduled torque compensation controller to effectively suppress frequency fluctuation. Moreover, since torque compensation brings about untimely power adjustment in over-rated wind speed condition, the conventional speed reference of pitch control system is improved. Our simulation and experimental results demonstrate that the proposed strategy can significantly improve frequency stability and smoothen power fluctuation resulting from wind speed variations. The minimum of frequency deviation with the proposed strategy is improved by up to 0.16 Hz at over-rated wind speed. Our technique can also improve anti-disturbance ability in frequency domain and achieve power balance

    Identification and Functional Characterization of Squamosa Promoter Binding Protein-Like Gene TaSPL16 in Wheat (Triticum aestivum L.)

    Get PDF
    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcript factors and play critical roles in plant growth and development. The functions of many SPL gene family members were well characterized in Arabidopsis and rice, in contrast, research on wheat SPL genes is lagging behind. In this study, we cloned and characterized TaSPL16, an orthologous gene of rice OsSPL16, in wheat. Three TaSPL16 homoeologs are located on the short arms of chromosome 7A, 7B, and 7D, and share more than 96% sequence identity with each other. All the TaSPL16 homoeologs have three exons and two introns, with a miR156 binding site in their last exons. They encode putative proteins of 407, 409, and 414 amino acid residues, respectively. Subcellular localization showed TaSPL16 distribution in the cell nucleus, and transcription activity of TaSPL16 was validated in yeast. Analysis of the spatiotemporal expression profile showed that TaSPL16 is highly expressed in young developing panicles, lowly expressed in developing seeds and almost undetectable in vegetative tissues. Ectopic expression of TaSPL16 in Arabidopsis causes a delay in the emergence of vegetative leaves (3–4 days late), promotes early flowering (5–7 days early), increases organ size, and affects yield-related traits. These results demonstrated the regulatory roles of TaSPL16 in plant growth and development as well as seed yield. Our findings enrich the existing knowledge on SPL genes in wheat and provide valuable information for further investigating the effects of TaSPL16 on plant architecture and yield-related traits of wheat

    Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets

    Get PDF
    Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ºC has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ºC has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ºC has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ºC substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.This work was supported by the Dalian University of Technology through the program of the Sea-sky Scholar

    PCSK9 inhibitors ameliorate arterial stiffness in ACS patients: evidences from Mendelian randomization, a retrospective study and basic experiments

    Get PDF
    BackgroundCurrent evidences suggest that Proprotein Convertase Subtilisin/kexin Type 9 inhibitors (PCSK9i) exhibit a protective influence on acute coronary syndrome (ACS). Nevertheless, further investigation is required to comprehend the impact and mechanisms of these pharmaceutical agents on inflammatory factors and arterial stiffness (AS) in patients with ACS. Consequently, the objective of this study is to ascertain the influence of PCSK9i on arterial stiffness in ACS patients and elucidate the underlying mechanisms behind their actions.MethodsThis study employed Mendelian randomization (MR) analysis to examine the association between genetic prediction of PCSK9 inhibition and arterial stiffness. Data of 71 patients with ACS were retrospectively collected, including PCSK9i group (n = 36, PCSK9 inhibitors combined with statins) and control group (n = 35, statins only). Blood lipid levels, inflammatory markers and pulse wave velocity (PWV) data were collected before treatment and at 1 and 6 months after treatment for analysis. Additionally, cell experiments were conducted to investigate the impact of PCSK9i on osteogenesis of vascular smooth muscle cells (VSMCs), utilizing western blot (WB), enzyme-linked immunosorbent assay (ELISA), and calcification index measurements.ResultsThe results of the MR analysis suggest that genetic prediction of PCSK9 inhibition has potential to reduce the PWV. Following treatment of statins combined with PCSK9 inhibitors for 1 and 6 months, the PCSK9i group exhibited significantly lower levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen (FIB) and procalcitonin (PCT) compared to the control group (p < 0.05). Additionally, PWV in the PCSK9i group demonstrated significant reduction after 6 months of treatment and was found to be associated with the circulating CRP level. In cell experiments, PCSK9i pretreatment ameliorated osteogenesis of VSMCs through reducing the deposition of calcium ions, alkaline phosphatase (ALP) activity, and expression of runt-related transcription factor 2 (RUNX2).ConclusionPCSK9i have potential to enhance arterial stiffness in ACS patients. Specifically, at the clinical level, this impact may be attributed to alterations in circulating CRP levels. At the cellular level, it is associated with the signaling pathway linked to RUNX2
    • …
    corecore