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The impact of inaccurate demand beliefs on dynamics of a Triopoly game is studied. We suppose that all the players make their
own estimations on possible demand with errors. A dynamic Triopoly game with such demand belief is set up. Based on this
model, existence and local stable region of the equilibriums are investigated by 3D stable regions of Nash equilibrium point. The
complex dynamics, such as bifurcation scenarios and route to chaos, are displayed in 2D bifurcation diagrams, in which 𝑒1 and 𝛼
are negatively related to each other. Basins of attraction are investigated and we found that the attraction domain becomes smaller
with the increase in price modification speed, which indicates that all the players’ output must be kept within a certain range so as
to keep the system stable. Feedback control method is used to keep the system at an equilibrium state.

1. Introduction

A Triopoly is a market structure dominated by three firms in
the market. The market is known as Cournot game if firms
choose quantities as their strategic variables to maximize
their profits in an uncertain demand environment.

In conventional market games, players are supposed to
have common accurate demand functions of market. The
dynamics of such system with this assumption have been
intensively investigated in literature [1–8].

Assuming cost function to be twice differentiable increas-
ing, Elabbasy et al. [1] analyzed the dynamics of oligopoly
games with three types of players: bounded rational, naive,
and adaptive.

Ma and Liu [2] studied a generalized nonlinear Fokker-
Planck diffusion equation with external force and absorption.
They obtained the corresponding exact solution expressed by𝑞-exponential function and the solutions can have a compact
behavior or a long tailed behavior.

Yassen and Agiza [3] studied a repeated Cournot game
model with delayed bounded rationality in the duopoly
market and demonstrated that the lagged structure is helpful

to expand the stable region of the system via numerical
simulations.

Ma andRen [4] focused on the influence of parameters on
themacroeconomics IS-LMmodel and improved the analysis
capabilities of the traditional economic models to suit the
actual macroeconomic environment. They found that the
system order has an important influence on the running state
of the system.

Tramontana and Elsadany [5] discussed a triopolistic
market with heterogeneous firms when the demand function
is isoelastic. He found that double routes lead to chaos, via
period-doubling and Neimark–Sacker bifurcations.

Ma and Ji [6] built a Triopoly outputs game model in
electric powermarket.They obtained that the Triopolymodel
is a chaotic system and it is better than the duopoly model in
applications.

Ma and Wu [7] studied the complexity of a Triopoly
price game model and influence of delayed decisions on
the stability. All those approaches assume that there is one
uniform and accurate market demand function available and
shared by all player.
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Ma and Pu [8] researched the Cournot-Bertrand duopoly
model with the application of nonlinear dynamics theory.
They analyzed the stability of the fixed points and gave the
bifurcation diagram and Lyapunov exponent spectrum along
with the corresponding chaotic attractor.The research results
show that either the change of output modification speed or
the change of price modification speed will lead the market
to the chaotic state which is disadvantageous for both of the
firms.

All those literatures assume that there is one accurate
market demand function, which is shared by all players. In
practice, demand functions may be influenced by lots of dif-
ferent factors and every player has to estimate his ownmarket
demand function on the basis of past experience.

Because it is impossible for the firms to get the whole
information, they cannot know the accurate demand func-
tion, so all the players have to make an estimate for demand
function. Compared to real market demand function, it is
inevitable for all the players to make demand evaluation
biases. Thus, it is important to study how dynamics of the
Triopoly game will be influenced by those evaluation biases,
in terms of equilibrium points, local stability, and system per-
formance.

A few works have been done to investigate the system
dynamics, equilibrium offset with inaccurate demand beliefs.
Bischi et al. [9] studied a model of a quantity-setting duopoly
market with misspecified demand, the global dynamics of
this game was investigated, and the number of steady states
and their welfare properties were characterized. The impact
of misspecified demand on the steady state was also studied.
However, the asymmetric systemwith heterogeneous players’
behavior has not been considered.

Wang andMa [10] considered a Cournot-Bertrandmixed
duopoly game model with limited information about the
market and opponent. They studied the local stability of the
game model at the Nash equilibrium point and discussed the
influences of the parameters on the system’s performance.

Bischi et al. [11] considered a repeated oligopoly game in
single product Cournot oligopolies and proposed a method
to learn demand function in a repeated oligopoly game via a
closed loop feedback of real market price, which adjusts the
evaluated demand function.

Guo and Ma [12] built a collecting price game model for
a close-loop supply chain system with a manufacturer and
a retailer who have different rationalities. They analyzed the
influences of parameters on complex dynamic phenomena,
such as the bifurcation, chaos, and continuous power spec-
trum.

Qiu et al. [13] studied the impact of uncertain demand on
dynamic output-settingmarket games. A dynamic game with
uncertain demand for two heterogeneous players was built.
Based on this model, the impact of uncertain demand on the
game’s complex dynamics was investigated. Sun and Ma [14]
constructed the three-oligopoly gamemodel and investigated
the existence of the fixed points. The 3D stable regions were
given. The complex dynamic behavior of the game model is
studied and the chaos was successfully controlled.

In this paper, we analyze the complex dynamics of a Tri-
opoly model with heterogeneous players and demand evalu-
ation bias, focusing on the following perspectives:

(1) Impact of demand estimate bias on equilibrium,
stable region, and profits.

(2) Impact of adjustment strategy on basins of attraction.

The paper is organized as follows. In Section 2, a Triopoly
game model with inaccurate demand belief is established.
In Section 3, the existence and local stability of equilibrium
points are discussed. The effects of inaccurate demand on
stable region, profit, and equilibriums are shown in Sec-
tion 4. Dynamical behaviors of the game are investigated by
numerical simulations using 2D bifurcation diagrams [15] in
Section 5. Basins of attraction [16] of the model are given
in Section 7. In Section 8, conclusions are drawn from our
analysis.

2. The Cournot Triopoly Game Model

We consider a Cournot Triopoly game in which the price and
the demand of firm 𝑖’s product are denoted by 𝑝𝑖 and 𝑞𝑖, 𝑖 =1, 2, 3, and the demand functions for the three firms are as
follows: 𝑝 = 𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3) (1)

in which 𝑎 and 𝑏 are both positive constants. Assume that all
the three firms have nonlinear cost function considering that
if 𝑞𝑖 exceeds a certain level, the cost will increase quickly and
the cost function of the 𝑖th firm has a quadratic form [3]:𝐶𝑖 (𝑞𝑖) = 𝑐𝑖𝑞2𝑖 (𝑖 = 1, 2, 3) . (2)

While in practice, not all the firms can get the whole
information, they may do not know demand function (1), so
all the players have tomake an estimate for demand function.

For each player, we assume that the actual demand
function held by player 𝑖 can be denoted by multiplying the
demand function (1) with an error coefficient 𝑒𝑖. And it has
the following form:𝑝 = 𝑒𝑖 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) (3)

which is called its subjective demand function.
The error coefficient 𝑒𝑖 which is between (0, 3)means the

imperfection degree of player 𝑖 about the market.
If 𝑒𝑖 = 1, it indicates that the evaluated demand function

is just the true demand function. If 𝑒𝑖 < 1, it indicates that
the demand is underestimated by player, while if 𝑒𝑖 > 1, it
indicates the case where the demand is overestimated.

So the firms can get their maximum profits according to
the following profit functions:

𝜋1 (𝑡) = 𝑒1 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) 𝑞1 − 𝑐1𝑞21𝜋2 (𝑡) = 𝑒2 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) 𝑞2 − 𝑐2𝑞22𝜋3 (𝑡) = 𝑒3 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) 𝑞3 − 𝑐3𝑞23,
(4)
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in which𝜋𝑖(𝑡) is the profit of firm 𝑖. Hence, themarginal profit
functions of firms in period 𝑡 are given by

𝜕𝜋1 (𝑡)𝜕𝑞1 (𝑡) = 𝑒1 (𝑎 − 2𝑏𝑞1 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞3 (𝑡))) − 2𝑐1𝑞1
𝜕𝜋2 (𝑡)𝜕𝑞2 (𝑡) = 𝑒2 (𝑎 − 2𝑏𝑞2 (𝑡) − 𝑏 (𝑞1 (𝑡) + 𝑞3 (𝑡))) − 2𝑐2𝑞2
𝜕𝜋3 (𝑡)𝜕𝑞3 (𝑡) = 𝑒3 (𝑎 − 2𝑏𝑞3 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞1 (𝑡))) − 2𝑐3𝑞3,

(5)

while in practice, firms usually cannot get the whole informa-
tion. For example, they cannot know other firm’s price in the
next period in advance, for which they cannot compute the
price by themarginal profit functions above. In this paper, we
consider all the firms as bounded rational players and their
next-period price decisions are made on the basis of the local
estimate to their marginal profit in current period. So the
players make their strategies as the following form:

𝑞𝑖 (𝑡 + 1) = 𝑞𝑖 (𝑡) + 𝑘𝑖𝑞𝑖 (𝑡) 𝜕𝜋𝑖 (𝑡)𝜕𝑞𝑖 (𝑡) (𝑘𝑖 = 𝛼, 𝛽, 𝛾) . (6)

The equation means that if the marginal profit of the
current period is positive, the firm will raise its price the next
period; otherwise, it will reduce it. So the dynamical Triopoly
system can be described as

𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) + 𝛼𝑞1 (𝑡) 𝐺1 (𝑡)𝑞2 (𝑡 + 1) = 𝑞2 (𝑡) + 𝛽𝑞2 (𝑡) 𝐺2 (𝑡)𝑞3 (𝑡 + 1) = 𝑞3 (𝑡) + 𝛾𝑞3 (𝑡) 𝐺3 (𝑡) , (7)

where

𝐺1 (𝑡) = 𝑒1 (𝑎 − 2𝑏𝑞1 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞3 (𝑡))) − 2𝑐1𝑞1𝐺2 (𝑡) = 𝑒2 (𝑎 − 2𝑏𝑞2 (𝑡) − 𝑏 (𝑞1 (𝑡) + 𝑞3 (𝑡))) − 2𝑐2𝑞2𝐺3 (𝑡) = 𝑒3 (𝑎 − 2𝑏𝑞3 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞1 (𝑡))) − 2𝑐3𝑞3.
(8)

0 < 𝛼, 𝛽, 𝛾 < 1 denote the players’ adjustment speeds, respec-
tively.

3. Equilibrium Points and Local Stability

3.1. EquilibriumPoints. According to system (7), let𝑝𝑖(𝑡+1) =𝑝𝑖(𝑡); then eight equilibrium points can be obtained:𝐸1 = (0, 0, 0)
𝐸2 = (0, 𝑎𝑒2(2 (𝑐2 + 𝑏𝑒2)) , 0)
𝐸3 = ( 𝑎𝑒1(2 (𝑐1 + 𝑏𝑒1)) , 0, 0)
𝐸4 = (0, 0, 𝑎𝑒3(2 (𝑐3 + 𝑏𝑒3)))
𝐸5 = (0, 𝑎𝑒2 (2𝑐3 + 𝑏𝑒3)(4𝑐2𝑐3 + 4𝑏𝑐2𝑒3 + 4𝑏𝑐3𝑤2 + 3𝑏2𝑒2𝑒3) ,𝑎𝑒3 (2𝑐2 + 𝑏𝑒2)(4𝑐2𝑐3 + 4𝑏𝑐2𝑒3 + 4𝑏𝑐3𝑒2 + 3𝑏2𝑒2𝑒3))
𝐸6 = ( 𝑎𝑒1 (2𝑐2 + 𝑏𝑒2)(4𝑐2𝑐1 + 4𝑏𝑐1𝑒2 + 4𝑏𝑐2𝑒1 + 3𝑏2𝑒2𝑒1) ,𝑎𝑒2 (2𝑐1 + 𝑏𝑒1)(4𝑐2𝑐1 + 4𝑏𝑐1𝑒2 + 4𝑏𝑐2𝑒1 + 3𝑏2𝑒2𝑒1) , 0)
𝐸7 = ( 𝑎𝑒1 (2𝑐3 + 𝑏𝑒3)(4𝑐3𝑐1 + 4𝑏𝑐1𝑒3 + 4𝑏𝑐3𝑒1 + 3𝑏2𝑒3𝑒1) , 0,𝑎𝑒3 (2𝑐1 + 𝑏𝑒1)(4𝑐3𝑐1 + 4𝑏𝑐1𝑒3 + 4𝑏𝑐3𝑒1 + 3𝑏2𝑒3𝑒1)) ,

(9)

and the Nash equilibrium point𝐸8 = (𝑞∗1 , 𝑞∗2 , 𝑞∗3 ) (10)

can be obtained, where

𝑞∗1 = (4𝑎𝑐2𝑐3𝑒1 + 2𝑎𝑏𝑐2𝑒1𝑒3 + 2𝑎𝑏𝑐3𝑒1𝑒2 + 𝑎𝑏2𝑒1𝑒2𝑒3)(2 (4𝑐1𝑐2𝑐3 + 3𝑏2𝑐1𝑒2𝑒3 + 3𝑏2𝑐2𝑒1𝑒3 + 3𝑏2𝑐3𝑒1𝑒2 + 2𝑏3𝑒1𝑒2𝑒3 + 4𝑏𝑐1𝑐2𝑒3 + 4𝑏𝑐1𝑐3𝑒2 + 4𝑏𝑐2𝑐3𝑒1))
𝑞∗2 = (𝑎𝑒2 (2𝑐1 + 𝑏𝑒1) (2𝑐3 + 𝑏𝑒3))(2 (4𝑐1𝑐2𝑐3 + 3𝑏2𝑐1𝑒2𝑒3 + 3𝑏2𝑐2𝑒1𝑒3 + 3𝑏2𝑐3𝑒1𝑒2 + 2𝑏3𝑒1𝑒2𝑒3 + 4𝑏𝑐1𝑐2𝑒3 + 4𝑏𝑐1𝑐3𝑒2 + 4𝑏𝑐2𝑐3𝑒1))
𝑞∗3 = (𝑎𝑒3 (2𝑐1 + 𝑏𝑒1) (2𝑐2 + 𝑏𝑒2))(2 (4𝑐1𝑐2𝑐3 + 3𝑏2𝑐1𝑒2𝑒3 + 3𝑏2𝑐2𝑒1𝑒3 + 3𝑏2𝑐3𝑒1𝑒2 + 2𝑏3𝑒1𝑒2𝑒3 + 4𝑏𝑐1𝑐2𝑒3 + 4𝑏𝑐1𝑐3𝑒2 + 4𝑏𝑐2𝑐3𝑒1)) .

(11)

It can be seen from above that𝐸8 is independent of the adjust-
ment factors. From an economic point of view, that means

the value of the system local stability point in this dynamic
game is independent of the players’ adjustment speed, but just
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determined by the characteristics of the system. We can find
from (11) that if 𝑒𝑖 of player 𝑖 increases and 𝑒𝑗 of other players
remains the same, 𝑞∗𝑖 will increase.

3.2. Nash Points in Error-Free System-Benchmark. If the
players have perfect knowledge, their subjective demand
functions totally coincide with the real ones. Setting 𝑒1 = 𝑒2 =𝑒3 = 1 in (11), we can get

𝑞∗1 = 𝑎 (𝑏 + 2𝑐2) (𝑏 + 2𝑐3)(6𝑏2𝑐1 + 6𝑏2𝑐2 + 6𝑏2𝑐3 + 4𝑏3 + 8𝑏𝑐1𝑐2 + 8𝑏𝑐1𝑐3 + 8𝑏𝑐3𝑐2 + 8𝑐1𝑐2𝑐3)
𝑞∗2 = 𝑎 (𝑏 + 2𝑐1) (𝑏 + 2𝑐3)(6𝑏2𝑐1 + 6𝑏2𝑐2 + 6𝑏2𝑐3 + 4𝑏3 + 8𝑏𝑐1𝑐2 + 8𝑏𝑐1𝑐3 + 8𝑏𝑐3𝑐2 + 8𝑐1𝑐2𝑐3)
𝑞∗3 = 𝑎 (𝑏 + 2𝑐1) (𝑏 + 2𝑐2)(6𝑏2𝑐1 + 6𝑏2𝑐2 + 6𝑏2𝑐3 + 4𝑏3 + 8𝑏𝑐1𝑐2 + 8𝑏𝑐1𝑐3 + 8𝑏𝑐3𝑐2 + 8𝑐1𝑐2𝑐3) .

(12)

Note that the denominator of 𝑞∗1 , 𝑞∗2 , and 𝑞∗3 is the same, the
output depends on the cost of the players, and the greater the
cost, the lower the yield. These results match the results in
[17].

3.3. Local Stability of SystemEquilibriums. In order to analyze
the stability of the preceding equilibrium points, the Jacobian
matrix for discrete dynamic system (7) is found as follows:

𝐽 = ( 𝐽1 −𝛼𝑏𝑒1𝑞1 −𝛼𝑏𝑒1𝑞1−𝛽𝑏𝑒2𝑞2 𝐽2 −𝛽𝑏𝑒2𝑞2−𝛾𝑏𝑒3𝑞3 −𝛾𝑏𝑒3𝑞3 𝐽3 ) (13)

in which𝐽1 = 1 − 𝛼𝑞1 (2𝑐1 + 2𝑏𝑒1)− 𝛼 (𝑒1 (𝑏 (𝑞2 + 𝑞3) − 𝑎 + 2𝑏𝑞1) + 2𝑐1𝑞1)𝐽2 = 1 − 𝛽𝑞2 (2𝑐2 + 2𝑏𝑒2)− 𝛽 (𝑒2 (𝑏 (𝑞1 + 𝑞3) − 𝑎 + 2𝑏𝑞2) + 2𝑐2𝑞2)𝐽3 = 1 − 𝛾𝑞3 (2𝑐3 + 2𝑏𝑒3)− 𝛾 (𝑒3 (𝑏 (𝑞1 + 𝑞2) − 𝑎 + 2𝑏𝑞3) + 2𝑐3𝑞3) .
(14)

According to Routh-Hurwitz condition, the necessary and
sufficient conditions for equilibrium points to be asymptot-
ically stable are that all roots of the characteristic equations
have magnitudes of eigenvalues less than 1.

Remark 1. 𝐸1, 𝐸2, 𝐸3, 𝐸4 are unstable equilibrium points.
As for 𝐸1, 𝐽1 = 1 + 𝑎𝛼 > 1 is one eigenvalue which

corresponds to 𝐸1, so 𝐸1 is an unstable equilibrium point.
As for 𝐸2, 𝐽1 = 1 + 𝛼𝑒1𝑎(1 − 𝑏𝑒2/(2𝑐2 + 2𝑏𝑒2)) > 1 is

one eigenvalue which corresponds to 𝐸2, so 𝐸2 is an unstable
equilibrium point. In the same way we can prove that 𝐸3 and𝐸4 are unstable equilibrium points.

Remark 2. 𝐸5, 𝐸6, and 𝐸7 are unstable equilibrium points.
As for 𝐸5, 𝐽1 = 1 − 𝛼(𝑒1(𝑏(𝑞2 + 𝑞3) − 𝑎)) is one eigenvalue

which corresponds to 𝐸1; set 𝑞2 = 𝑎𝑒2(2𝑐3 + 𝑏𝑒3)/(4𝑐2𝑐3 +

4𝑏𝑐2𝑒3 + 4𝑏𝑐3𝑒2 + 3𝑏2𝑒2𝑒3), 𝑞3 = 𝑎𝑒3(2𝑐2 + 𝑏𝑒2)/(4𝑐2𝑐3 +4𝑏𝑐2𝑒3 + 4𝑏𝑐3𝑒2 + 3𝑏2𝑒2𝑒3), and then 𝑏(𝑞2 + 𝑞3) − 𝑎 < 0, so𝐽1 = 1 − 𝛼(𝑒1(𝑏(𝑞2 + 𝑞3) − 𝑎)) > 1.
So 𝐸5 is an unstable equilibrium point. In the same way

we can prove that 𝐸6 and 𝐸7 are unstable equilibrium points.
From an economic point of view, in the stable state of

this dynamic game, no player is forced to withdraw from the
market.

As for 𝐸8, the necessary and sufficient condition of
asymptotic stability is that all the eigenvalues are inside the
unit circle in complex plane. So a stable system must satisfy
the following conditions: 𝑓 (1) = 1 + 𝐴 + 𝐵 + 𝐶 > 0−𝑓 (−1) = 1 − 𝐴 + 𝐵 − 𝐶 > 0𝐶2 − 1 < 0

(1 − 𝐶2)2 − (𝐵 − 𝐴𝐶)2 > 0,
(15)

where 𝑓(𝜆) = 𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0 is the characteristic
polynomial at 𝐸8.

For convenience, we set the parameters as follows:𝑎 = 10,𝑏 = 0.2,𝑐1 = 0.1,𝑐2 = 0.1,𝑐3 = 0.1,𝑒1 = 0.9,𝑒2 = 1.0;𝑒3 = 1.1;

(16)

and the initial values are chosen as (1, 1, 1).
According to the parameters above,𝐸8 = (9.4832, 10.0100, 10.4867) . (17)
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Figure 1: The stable region of Nash equilibrium point, (𝑒1, 𝑒2, 𝑒3) =(0.9, 1.0, 1.1).
Its Jacobian matrix is

𝐽 (𝐸8) = (1.0 − 5.31𝛼 −1.71𝛼 −1.71𝛼−2.0𝛽 1.0 − 6.01𝛽 −2.0𝛽−2.31𝛾 −2.31𝛾 1.0 − 6.71𝛾) . (18)

The characteristic equation of Jacobian matrix (18) is𝑓 (𝜆) = 𝜆3 + 𝐴1𝜆2 + 𝐵1𝜆 + 𝐶1 = 0 (19)

in which𝐴1 = (5.31𝛼 + 6.01𝛽 + 6.71𝛾 − 3.0)𝐵1 = ((6.71𝛾 − 1.0) (5.31𝛼 + 6.01𝛽 − 2.0) − 3.42𝛼𝛽− 3.94𝛼𝛾 − 4.62𝛽𝛾 + (5.31𝛼 − 1.0) (6.01𝛽 − 1.0))𝐶1 = 2.31𝛾 (3.42𝛼𝛽 + 1.71𝛼 (5.31𝛼 − 1.0)) − (3.94𝛼𝛾+ 4.62𝛽𝛾) (5.31𝛼 + 6.01𝛽 − 2.0) − (6.71𝛾 − 1.0)⋅ (3.42𝛼𝛽 − (5.31𝛼 − 1.0) (6.01𝛽 − 1.0))+ 2.31𝛾 (2.0𝛽 (6.01𝛽 − 1.0) + 3.42𝛼𝛽) .

(20)

As what can be shown in Figure 1, a stable region in the space
of (𝛼, 𝛽, 𝛾) is determined by the above inequalities. In the
stable region, the final prices of the three oligarchs will stay
stable at𝐸8 after a number of games. FromFigure 1, we can see
that the market is stable when V ∈ [0, 1], but the market may
be unstable when 𝛼, 𝛽, 𝛾 increases.The economic meaning of
the stable region is that if (𝛼, 𝛽, 𝛾) is in the stable region, prices
of three firms will achieve the Nash equilibrium at last.

3.4. The Effects of Parameters 𝑒𝑖 on Stable Region. In order
to analyze the effects of parameter 𝑤 on stable region, let
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Figure 2: The stable region of Nash equilibrium point, (𝑒1, 𝑒2, 𝑒3) =(1, 1.1, 1.2).
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Figure 3: The stable region of Nash equilibrium point, (𝑒1, 𝑒2, 𝑒3) =(0.8, 0.9, 1).
(𝑒1, 𝑒2, 𝑒3) = (1, 1.1, 1.2) and (0.8, 0.9, 1), respectively; then
the corresponding stable region is shown in Figures 2 and 3.
From the comparison we find that, with the increase of 𝑒𝑖, the
stable region narrows.

From an economic point of view, if the players overesti-
mate the demand, the range of price adjustment speed will
be smaller; however if the players underestimate the demand,
the range of price adjustment speed will be bigger.

4. Bifurcation Diagrams

4.1. 2D Bifurcation Diagrams and Interactive Relationships
between 𝑒1 and 𝛼, 𝛽, and 𝛾. 2D bifurcation diagram is a
more powerful tool in the numerical analysis of nonlinear
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Figure 4: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.2 and 𝛾 = 0.1.
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Figure 5: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.25 and 𝛾 = 0.1.
dynamics than a 1D bifurcation diagram. In the 2D bifurca-
tion diagram, bifurcation scenarios and route to chaos can
be displayed more clearly. In this section, the 2D bifurcation
diagram will be used to analyze the effects of players’
adjustment speeds and 𝑒1 on system stability.

For convenience, we choose 𝑒2 = 1 and 𝑒3 = 1.1 and
study the interactive relationships between 𝑒1 and 𝛼 by 2D
bifurcation diagrams.

First let 𝛾 = 0.1 and 𝛽 = 0.2, 0.25, 0.3, respectively; then
three (𝛼, 𝑒1) 2D bifurcation diagrams are shown in Figures 4,
5, and 6.

In Figures 4–6, different colors are assigned to each region
to show the particular behavior of system (7), that is, light
green, stable states; yellow, period-2 stable cycles; purple,
period-4; gray, chaotic state; dark green, escape.

In the 2D bifurcation diagrams, the system exhibits a
sequence of flip bifurcations to chaos (which means that the
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Figure 6: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.3 and 𝛾 = 0.1.
market will fall into chaos), then to divergence at last (which
means the players will be out of the market).

As seen from Figure 4, if player 1’s adjustment speed
is relatively slow (in the brown area), the economic system
will be in a stable state. Along with the increase in the
adjustment speed parameters, the economic system will
experience cyclical shocks, chaos, and even disappearance.
Obviously, relatively large parameters are detrimental to the
economic system.

We can find the following results from Figures 4, 5, and 6,

(1) We find that, in the stable region in every figure, with
the increase in 𝛼, the maximum of 𝑒1 decreases; with
the increase in 𝑒1, the maximum of 𝛼 decreases.

(2) We find that, with the increase in 𝛽, stable region
reduces, while escape region does not expand obvi-
ously, but period-2 stable cycles expand obviously.

Secondly fix 𝛽 at 0.1, let 𝛾 = 0.2, 0.25, 0.3, respectively, and
then three (𝛼, 𝑒1) 2D bifurcation diagrams can be shown in
Figures 7, 8, and 9. Comparing Figures 7, 8, and 9, we find
that, with the increasing of 𝛾, stable region reduces, while
escape region does not expand obviously, but period-2 stable
cycles and period-4 stable cycles expand obviously, from the
comparison of Figures 7, 8, and 9, stable region of player 1
reduces when 𝛽 and 𝛾 increase.

Let 𝛽 = 0.2 and 𝛾 = 0.2, and then we can get Figure 10.
Comparing Figures 4 and 10, we can find that 𝛽 and 𝛾 are

nearly symmetrical and any parameter (𝛽 and 𝛾) of changes
will make stable region smaller.

4.2. 1D Bifurcation Diagrams and Interactive Attractors. We
will display the consistency between 1D bifurcation diagrams
and 2D bifurcation diagrams for Figure 10 and show the
attractors.

In Figure 10, 𝛽 = 0.2 and 𝛾 = 0.2; if 𝑒1 is fixed at 0.9,
then we can get the bifurcation diagrams with 𝛼 in Figure 11,
in which blue set of points denotes 𝑝1(𝑡), red set of points
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Figure 7: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.1 and 𝛾 = 0.2.
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Figure 8: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.1 and 𝛾 = 0.25.
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Figure 9: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.1 and 𝛾 = 0.3.
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Figure 10: (𝑒1, 𝛼)-2D bifurcation diagram with 𝛽 = 0.2 and 𝛾 = 0.2.
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Figure 11: Bifurcation diagram with 𝛼, 𝛽 = 0.2 and 𝛾 = 0.2.
denotes 𝑝2(𝑡), and black set of points denotes 𝑝3(𝑡). As can
be seen, system (7) loses its stability when 𝛼 = 0.2, and
after a series of flip bifurcations, it falls into chaos when 𝛼 =0.36, which is consistent with Figure 10. We can find that,
with the same cost, the player 𝑖 with bigger 𝑒𝑖 has a higher
equilibrium output, and player 𝑖 with smaller 𝑒𝑖 has a lower
equilibrium output. We also give the corresponding largest
Lyapunov exponent (LLE), which is consistent with Figure 12.

According to Figure 8, when 𝛼 = 0.3 and 𝛽 = 0.6, LLE is
positive, then system (7) is in chaos, and the chaotic attractor
is shown in Figure 13.

From an economic point of view, the appearance of flip
bifurcation means market gradually going into the chaotic
state from the constant and violent fluctuations.

Under certain conditions, higher 𝑒1 can improve the
equilibrium result, as shown in Figure 11. However, it is
not to say that the increase in 𝑒1 will certainly increase the
equilibrium output, if 𝑒1 goes beyond the stability region.
Increase in 𝑒1 may lead to fluctuations in the system and not
necessarily can play a role in improving production, which
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Figure 12: Largest Lyapunov exponent with 𝛼, 𝛽 = 0.2 and 𝛾 = 0.2.
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Figure 13:The chaotic attractor of system (7) with 𝛼 = 0.36, 𝛽 = 0.2,
and 𝛾 = 0.2.
can be seen in Figures 14, 15, and 16. We also find that the
increase in 𝑒1 will decrease output of other players.
5. The Effects of 𝑒𝑖 on Profits

Next we will discuss the effects of 𝑒𝑖 on profits; merge (4)–(7):𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) + 𝛼𝑞1 (𝑡)[𝑒1 (𝑎 − 2𝑏𝑞1 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞3 (𝑡))) − 2𝑐1𝑞1]𝑞2 (𝑡 + 1) = 𝑞2 (𝑡) + 𝛽𝑞2 (𝑡)[𝑒2 (𝑎 − 2𝑏𝑞2 (𝑡) − 𝑏 (𝑞1 (𝑡) + 𝑞3 (𝑡))) − 2𝑐2𝑞2]𝑞3 (𝑡 + 1) = 𝑞3 (𝑡) + 𝛾𝑞3 (𝑡)[𝑒3 (𝑎 − 2𝑏𝑞3 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞1 (𝑡))) − 2𝑐3𝑞3]𝜋1 (𝑡) = 𝑒1 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) 𝑞1 − 𝑐1𝑞21𝜋2 (𝑡) = 𝑒2 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) 𝑞2 − 𝑐2𝑞22𝜋3 (𝑡) = 𝑒3 (𝑎 − 𝑏 (𝑞1 + 𝑞2 + 𝑞3)) 𝑞3 − 𝑐3𝑞23.

(21)
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Figure 14: Bifurcation diagram with 𝑒1, 𝛼 = 0.2, 𝛽 = 0.2, and 𝛾 =0.1.
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Figure 15: Bifurcation diagram with 𝑒1, 𝛼 = 0.3, 𝛽 = 0.2, and 𝛾 =0.1.
The effects of 𝑒1 on the three firms’ profits can be shown

in Figures 17–19.
The values of the parameters are the same as above, blue

set of points denotes𝜋1(𝑡), red set of points denotes𝜋2(𝑡), and
black set of points denotes 𝜋3(𝑡).

We can conclude from Figure 17 that if 𝑒1 < 1.3, with
increase of 𝑒1, 𝜋1(𝑡) increases,𝜋2(𝑡) and𝜋3(𝑡) decrease; when𝑒1 > 1.3, all the firms’ profits will lose stability and even fall
into chaos. Comparing Figures 15 and 16, we can get Figures
18 and 19.

When the speed of adjustment is accelerated, increase of𝑒1 may cause the system to lose stability, not necessarily to
improve the profit.

An interesting phenomenon is that, compared with bifur-
cation diagramwith 𝑒1, fluctuations in profits are smaller than
fluctuations in output.
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Figure 16: Bifurcation diagram with 𝑒1, 𝛼 = 0.2, 𝛽 = 0.2, and 𝛾 =0.2.
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Figure 17: Effects of 𝑒1 on profits, 𝛼 = 0.2, 𝛽 = 0.2, and 𝛾 = 0.1.
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Figure 18: Effects of 𝑒1 on profits, 𝛼 = 0.3, 𝛽 = 0.2, and 𝛾 = 0.1.
6. Chaos Control

According to the above numerical simulation, we can see that
if the firms’ price adjustment speeds are beyond the stable
region, the market will lose stability and even fall into chaos.
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Figure 19: Effects of 𝑒1 on profits, 𝛼 = 0.2, 𝛽 = 0.2, and 𝛾 = 0.2.
Chaos in the economic systems is harmful to all the firms.
In order to avert the risk, it is expedient for prices chosen by
Triopoly to maintain at Nash equilibrium.

Many methods for the chaos control have been pro-
posed, such as time-delayed feedback method [18], modified
straight-line stabilization method [19], OGY method [20],
and pole placement method [21]. In this section, feedback
control method proposed by Elabbasy et al. [1] is used, so the
controlled system is given by𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) + 𝛼𝑞1 (𝑡)[𝑒1 (𝑎 − 2𝑏𝑞1 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞3 (𝑡))) − 2𝑐1𝑞1]

𝑞2 (𝑡 + 1) = 𝑞2 (𝑡) + 𝛽𝑘 + 1𝑞2 (𝑡)[𝑒2 (𝑎 − 2𝑏𝑞2 (𝑡) − 𝑏 (𝑞1 (𝑡) + 𝑞3 (𝑡))) − 2𝑐2𝑞2]𝑞3 (𝑡 + 1) = 𝑞3 (𝑡) + 𝛾𝑞3 (𝑡)[𝑒3 (𝑎 − 2𝑏𝑞3 (𝑡) − 𝑏 (𝑞2 (𝑡) + 𝑞1 (𝑡))) − 2𝑐3𝑞3] ,
(22)

where 𝑘 is the controlling factor and the Jacobian matrix of
(22) is given as

𝐽 = ( 𝐽1 −𝛼𝑏𝑒1𝑞1 −𝛼𝑏𝑒1𝑞1− 𝛽𝑘 + 1𝑏𝑒2𝑞2 𝐽2𝑘 + 1 − 𝛽𝑘 + 1𝑏𝑒2𝑞2−𝛾𝑏𝑒3𝑞3 −𝛾𝑏𝑒3𝑞3 𝐽3 ), (23)

where𝐽1 = 1 − 𝛼𝑞1 (2𝑐1 + 2𝑏𝑒1)− 𝛼 (𝑒1 (𝑏 (𝑞2 + 𝑞3) − 𝑎 + 2𝑏𝑞1) + 2𝑐1𝑞1)𝐽2 = 1 − 𝛽𝑞2 (2𝑐2 + 2𝑏𝑒2)− 𝛽 (𝑒2 (𝑏 (𝑞1 + 𝑞3) − 𝑎 + 2𝑏𝑞2) + 2𝑐2𝑞2)𝐽3 = 1 − 𝛾𝑞3 (2𝑐3 + 2𝑏𝑒3)− 𝛾 (𝑒3 (𝑏 (𝑞1 + 𝑞2) − 𝑎 + 2𝑏𝑞3) + 2𝑐3𝑞3) .
(24)
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Figure 20: Bifurcation diagram with 𝛼, 𝑘 = 0.5.
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Figure 21: Bifurcation diagram with 𝛼, 𝑘 = 1.
In the practicemarket, 𝑘 can be considered as the learning

ability or adaptability of firm 2. For example, firm 2 analyzed
the information in the past and adjusted the speed of price. As
what can be seen from Figures 20, 21, and 22, the chaos can be
delayed and even eliminated with proper 𝑘. As for Figure 11,
set 𝑘 = 0.5, 1, 2, respectively; we can get Figures 20–22.

As can be seen, with the increase of the control factor𝑘, the emergence of bifurcation is delayed. So if the second
bounded rational player adopts this adjustment method, the
price game can reach equilibrium state finally.

Let 𝛼 = 0.35, 𝛽 = 0.2, and 𝛾 = 0.2, according to Figure 11;
the system is in chaos, if 𝛼, 𝛽, and 𝛾 are fixed, and player
2 changes the controlling factor 𝑘; we can get the following
bifurcation diagram with the controlling factor 𝑘. As can see
from Figure 23, when 𝑘 < 0.028, the system is in a chaotic
state, when 0.029 ≤ 𝑘 ≤ 0.030, the system is in a 16-period
cycle, when 0.031 ≤ 𝑘 ≤ 0.037, the system is in 8-period
cycle, when 0.038 ≤ 𝑘 ≤ 0.16, the system is in a 4-period
cycle, when 0.16 ≤ 𝑘 ≤ 0.76, the system is in a 2-period cycle
state, and the system reaches equilibrium state when 𝑘 ≤ 0.76.
7. Global Stability of the System

In order to investigate the impact of price adjustment speed
on the global stability, we introduced basins of attraction,
which include attraction domain, attractor, and escaping area.
Let (𝑒1, 𝑒2) = (1, 1), and fix 𝑞3 at 10, 7, 5. We make basins of
attraction with initial output 𝑞1 and 𝑞2.

15

10

5

0

O
ut
pu

t

�훼

0.8 10.60.40.20

Figure 22: Bifurcation diagram with 𝛼, 𝑘 = 2.
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Figure 23: Bifurcation diagram with the controlling factor 𝑘, 𝛼 =0.35, 𝛽 = 0.2, and 𝛾 = 0.2.
The attraction domain is the set of initial output where

the same attractor will emerge after a series of iteration if the
initial price is taken from the attraction domain. As for the
attractor, if it is one equilibrium point, from an economic
point of view, the corresponding attraction domain will be
a safe region, which means that if the initial output of two
sides is in the safe region, the system will remain stable after
iteration. If the initial price is in the escape area, the system
will fall into divergence at last.

By fixing the system parameters as mentioned above and
setting (𝛼, 𝛽) = (0.3, 0.1), (0.3, 0.25), respectively, six basins of
attraction about (𝑝1, 𝑝2) of the system are shown in Figures
24–29 in which the green region denotes attraction domain,
the red set of points denotes attractor, and the blue set of
points denotes escape area.

In Figure 24, when 𝛼 = 0.3, 𝛽 = 0.1, and 𝑞3 = 10, the
system is in 2-period cycle, and we can see that the attraction
domain is an irregular hexagon. In Figure 25, when 𝛼 = 0.3,𝛽 = 0.25, and 𝑞3 = 10, the system is in period-2 state,
which means that if the initial prices of two sides are in
this attraction domain, then outputs will oscillate between
two points at last. The attraction domain is also an irregular
pentagon area and chaotic attractor appears. In Figure 26,
when 𝛼 = 0.3, 𝛽 = 0.1, and 𝑞3 = 7, the system is in 2-period
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Figure 24: Basins of attraction, 𝛼 = 0.3, 𝛽 = 0.1, and 𝑞3 = 10.
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Figure 25: Basins of attraction, 𝛼 = 0.3, 𝛽 = 0.25, and 𝑞3 = 10.
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Figure 26: Basins of attraction, 𝛼 = 0.3, 𝛽 = 0.1, and 𝑞3 = 7.
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Figure 27: Basins of attraction, 𝛼 = 0.3, 𝛽 = 0.25, and 𝑞3 = 7.
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Figure 28: Basins of attraction, 𝛼 = 0.3, 𝛽 = 0.1, and 𝑞3 = 5.
cycle. In Figure 27, when 𝛼 = 0.3, 𝛽 = 0.25, and 𝑞3 = 7, the
system is in chaos. In Figure 28, when 𝛼 = 0.3, 𝛽 = 0.1, and𝑞3 = 5, the system is in 4-period cycle. In Figure 29, when𝛼 = 0.3, 𝛽 = 0.25, and 𝑞3 = 5, the system is in chaos.

Comparing Figures 24–29, we find that the attraction
domain reduceswith the increase of pricemodification speed.
Obviously, when 𝛽 of player 2 increases, in the attraction
domain, the range of 𝑞2 reduces. We can also find that, with
increase of 𝑞3, attraction domain reduces, although not so
obvious.

From an economic perspective, the initial outputs of firm
1 and 2 should be lower in order to maintain market stability.

8. Conclusion

In this paper, Triopoly game with inaccurate demand beliefs
is considered. Suppose all the firms as bounded rationally
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Figure 29: Basins of attraction, 𝛼 = 0.3, 𝛽 = 0.25, and 𝑞3 = 5.
players with demand evaluation bias. Equilibrium output is
negatively related to players’ costs; the value of 𝑒𝑖 is negatively
related to range of stability.

2D bifurcation diagram is introduced and we find that
with the increase of output modification speed or 𝑒𝑖, the
system will fall into chaos via period-doubling bifurcations.
Increase in 𝑒1 will increase equilibrium output 𝑞1 while
decreasing equilibrium output of other players.

Basins of attraction are investigated and results show that
if a player speeds up his own output adjustment, the output
of this player in the attraction domain will become smaller.
In order to maintain market stability, a firm’s output must be
kept within a certain range. Feedback control method is used
to help the system to keep at an equilibrium state.
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