94 research outputs found

    Agricultural sector, rural environment and biodiversity in the Central and Eastern European EU member states

    Get PDF
    During the second half of the 20th century, agriculture and the rural environment diverged in Westernand Central and Eastern European countries (CEEC). CEE countries itself are heterogeneous in therespect of land use intensity and history. In the current review we focus on the comparison of theagricultural sector and threats on biodiversities of EU new-member countries from Central andEastern Europe and the old EU(15) member states. The clustering of countries revealed groupsdistinguished according to the level of their economic productivity, discriminating mostly amongeastern and western European countries. CEE countries sub-divided according to geographic region,including also some old members of the EU. Within the western cluster, two large sub-clustersbecame evident according to economy affected by altitudinal and climatic differences. Partly becausethere are still areas where the intensity of land use remained low, the biological diversity in manyregions of Central and Eastern Europe has remained high. However, loss of extensively used habitats,the restoration on intensive agriculture, reforestation with exotic species and urbanization are majorthreats to nature in CEE countries. The estimated variability among CEE countries is caused bydifferent historical and cultural backgrounds of those countries. Due to the complexity andgeographical diversity of driving forces, there remains much uncertainty in the possible impacts ofparticular factors on land use. This complexity and diversity have to be considered when planningeconomic as well as ecological means for developing the agricultural sector and conservingbiodiversity in the future of CEE countries

    Active gas seepage in western Spitsbergen fjords, Svalbard archipelago: spatial extent and geological controls

    Get PDF
    This study presents the first systematic observations of active gas seepage from the seafloor in the main fjords of western Spitsbergen in the Svalbard archipelago. High-resolution acoustic water column data were acquired throughout two research cruises in August 2015 and June 2021. 883 gas flares have been identified and characterized in Isfjorden, and 115 gas flares in Van Mijenfjorden. The hydroacoustic data indicate active fluid migration into the water column. Interpretation of 1943 km of regional offshore 2D seismic profiles supplemented the water column and existing gas geochemical data by providing geological control on the distribution of source rocks and potential migration pathways for fluids. In the study area, bedrock architecture controls the fluid migration from deep source rocks. Faults, high permeability layers, heavily fractured units and igneous intrusions channel the gas seepage into the water column. The observations of gas seepage presented in this study are an important step towards the assessment of how near-shore seepage impacts upon the carbon budget of Svalbard fjords, which constitute a globally recognized early climate change warning system for the High Arctic

    Structure and function of the soil microbiome underlying N2O emissions from global wetlands

    Get PDF
    Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and ozone depleter released by microbes. Yet, microbial players and processes underlying the N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements and by determining the structure and potential functional of microbial communities in 645 wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in drained and warm wetland soils, and are correlated with functional diversity of microbes. We further provide evidence that despite their much lower abundance compared to bacteria, nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils globally. Our data suggest that ongoing global warming and intensifying environmental change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater source of N2O.The wetland soil microbiome has a major impact on greenhouse gas emissions. Here the authors characterize how a group of archaea contribute to N2O emissions and find that climate and land use changes could promote these organisms

    Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties

    Get PDF
    International audienceAim: Forests are highly fragmented across Western Europe, making forest edges im ‐portant features in many agricultural landscapes. Forest edges are subject to strong abiotic gradients altering the forest environment and resulting in strong biotic gradi ‐ents. This has the potential to change the forest's capacity to provide multiple eco ‐system services such as nutrient cycling, carbon sequestration and natural pest control. Soil organisms play a key role in this perspective; however, these taxa are rarely considered in forest edge research.Location: A latitudinal gradient of 2,000 km across Western Europe.Methods: We sampled six dominant taxa of litter‐dwelling macro‐arthropods (car ‐abid beetles, spiders, harvestmen, centipedes, millipedes and woodlice) in forest edges and interiors of 192 forest fragments in 12 agricultural landscapes. We related their abundance and community composition to distance from the edge and the inter ‐action with forest age, edge orientation and edge contrast (contrast between land use types at either side of the edge).Results: Three out of six macro‐arthropod taxa have higher activity‐density in forest edges compared to forest interiors. The abundance patterns along forest edge‐to‐in‐terior gradients interacted with forest age. Forest age and edge orientation also influ ‐enced within‐fragment compositional variation along the forest edge‐to‐interior gradient. Edge contrast influenced abundance gradients of generalist predators. In general, older forest fragments, south‐oriented edges and edges along structurally more continuous land use (lower contrast between forest and adjacent land use) re ‐sulted in stronger edge‐to‐interior gradients while recent forests, north‐oriented edges and sharp land use edges induced similarity between forest edge and interior along the forest edge‐to‐interior gradients in terms of species activity‐density and composition.Main conclusions: Edge effects on litter‐dwelling macro‐arthropods are anticipated to feedback on important ecosystem services such as nutrient cycling, carbon se ‐questration and natural pest control from small forest fragments

    Hedging against biodiversity loss : forest herbs’ performance in hedgerows across temperate Europe

    Get PDF
    Questions: How do contrasting environmental conditions among forests and hedgerows affect the vegetative and reproductive performance of understorey forest herbs in both habitats? Can hedgerows support reproductive source populations of forest herbs, thus potentially allowing progressive dispersal of successive generations along these linear habitats? Location: Hedgerows and deciduous forest patches in agricultural landscapes across the European temperate biome. Methods: First, we assessed differences in environmental conditions among forests and hedgerows. Next, we quantified plant performance based on a set of functional life‐history traits for four forest herbs (Anemone nemorosa, Ficaria verna, Geum urbanum, Poa nemoralis) with contrasting flowering phenology and colonisation capacity in paired combinations of forests and hedgerows, and compared these traits among both habitats. Finally, we assessed relationships between plant performance and environmental conditions in both habitats. Results: All study species showed a higher above‐ground biomass in hedgerows than in forests. For Poa nemoralis and Geum urbanum, we also found a higher reproductive output in hedgerows, which was mainly correlated to the higher sub‐canopy temperatures therein. The “ancient forest herb” Anemone nemorosa, however, appeared to have a lower reproductive output in hedgerows than in forests, while for Ficaria verna no reproductive differences were found between the two habitats. Conclusions: This is the first study on such a broad geographical scale to provide evidence of reproductive source populations of forest herbs in hedgerows. Our findings provide key information on strategies by which forest plants grow, reproduce and disperse in hedgerow environments, which is imperative to better understand the dispersal corridor function of these wooded linear structures. Finally, we highlight the urgent need to develop guidelines for preserving, managing and establishing hedgerows in intensive agricultural landscapes, given their potential to contribute to the long‐term conservation and migration of forest herbs in the face of global environmental change

    High ecosystem service delivery potential of small woodlands in agricultural landscapes

    Get PDF
    Global forest loss and fragmentation have strongly increased the frequency of forest patches smaller than a few hectares. Little is known about the biodiversity and ecosystem service supply potential of such small woodlands in comparison to larger forests. As it is widely recognized that high biodiversity levels increase ecosystem functionality and the delivery of multiple ecosystem services, small, isolated woodlands are expected to have a lower potential for ecosystem service delivery than large forests hosting more species. We collected data on the diversity of six taxonomic groups covering invertebrates, plants and fungi, and on the supply potential of five ecosystem services and one disservice within 224 woodlands distributed across temperate Europe. We related their ability to simultaneously provide multiple ecosystem services (multiservice delivery potential) at different performance levels to biodiversity of all studied taxonomic groups (multidiversity), forest patch size and age, as well as habitat availability and connectivity within the landscape, while accounting for macroclimate, soil properties and forest structure. Unexpectedly, despite their lower multidiversity, smaller woodlands had the potential to deliver multiple services at higher performance levels per area than larger woodlands of similar age, probably due to positive edge effects on the supply potential of several ecosystem services. Biodiversity only affected multiservice delivery potential at a low performance level as well as some individual ecosystem services. The importance of other drivers of ecosystem service supply potential by small woodlands in agricultural landscapes also depended on the level of performance and varied with the individual ecosystem service considered. Synthesis and applications. Large, ancient woodlands host high levels of biodiversity and can therefore deliver a number of ecosystem services. In contrast, smaller woodlands in agricultural landscapes, especially ancient woodlands, have a higher potential to deliver multiple ecosystem services on a per area basis. Despite their important contribution to agricultural landscape multifunctionality, small woodlands are not currently considered by public policies. There is thus an urgent need for targeted policy instruments to ensure their adequate management and future conservation in order to either achieve multiservice delivery at high levels or to maximize the delivery of specific ecosystem services

    High ecosystem service delivery potential of small woodlands in agricultural landscapes

    Get PDF
    Global forest loss and fragmentation have strongly increased the frequency of forest patches smaller than a few hectares. Little is known about the biodiversity and ecosystem service supply potential of such small woodlands in comparison to larger forests. As it is widely recognized that high biodiversity levels increase ecosystem functionality and the delivery of multiple ecosystem services, small, isolated woodlands are expected to have a lower potential for ecosystem service delivery than large forests hosting more species. We collected data on the diversity of six taxonomic groups covering invertebrates, plants and fungi, and on the supply potential of five ecosystem services and one disservice within 224 woodlands distributed across temperate Europe. We related their ability to simultaneously provide multiple ecosystem services (multiservice delivery potential) at different performance levels to biodiversity of all studied taxonomic groups (multidiversity), forest patch size and age, as well as habitat availability and connectivity within the landscape, while accounting for macroclimate, soil properties and forest structure. Unexpectedly, despite their lower multidiversity, smaller woodlands had the potential to deliver multiple services at higher performance levels per area than larger woodlands of similar age, probably due to positive edge effects on the supply potential of several ecosystem services. Biodiversity only affected multiservice delivery potential at a low performance level as well as some individual ecosystem services. The importance of other drivers of ecosystem service supply potential by small woodlands in agricultural landscapes also depended on the level of performance and varied with the individual ecosystem service considered. Synthesis and applications. Large, ancient woodlands host high levels of biodiversity and can therefore deliver a number of ecosystem services. In contrast, smaller woodlands in agricultural landscapes, especially ancient woodlands, have a higher potential to deliver multiple ecosystem services on a per area basis. Despite their important contribution to agricultural landscape multifunctionality, small woodlands are not currently considered by public policies. There is thus an urgent need for targeted policy instruments to ensure their adequate management and future conservation in order to either achieve multiservice delivery at high levels or to maximize the delivery of specific ecosystem services

    Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs

    Get PDF
    Context Evidence for effects of habitat loss and fragmentation on the viability of temperate forest herb populations in agricultural landscapes is so far based on population genetic studies of single species in single landscapes. However, forest herbs differ in their life histories, and landscapes have different environments, structures and histories, making generalizations difficult. Objectives We compare the response of three slow-colonizing forest herbs to habitat loss and fragmentation and set this in relation to differences in life-history traits, in particular their mating system and associated pollinators. Methods We analysed the herbs' landscape-scale population genetic structure based on microsatellite markers from replicate forest fragments across seven European agricultural landscapes. Results All species responded to reductions in population size with a decrease in allelic richness and an increase in genetic differentiation among populations. Genetic differentiation also increased with enhanced spatial isolation. In addition, each species showed unique responses. Heterozygosity in the self-compatible Oxalis acetosella was reduced in smaller populations. The genetic diversity of Anemone nemorosa, whose main pollinators are less mobile, decreased with increasing spatial isolation, but not that of the bumblebee-pollinated Polygonatum multiflorum. Conclusions Our study indicates that habitat loss and fragmentation compromise the long-term viability of slow-colonizing forest herbs despite their ability to persist for many decades by clonal propagation. The distinct responses of the three species studied within the same landscapes confirm the need of multi-species approaches. The mobility of associated pollinators should be considered an important determinant of forest herbs' sensitivity to habitat loss and fragmentation
    • 

    corecore