5 research outputs found

    NLRC3 Delays the Progression of AD in APP/PS1 Mice via Inhibiting PI3K Activation

    No full text
    NLRC3 inhibits inflammatory responses. Neuroinflammation induces and accelerates the onset of Alzheimer’s disease (AD). This study is aimed at investigating whether NLRC3 plays a role in neuroinflammation, Aβ accumulation, and neuroprotection in AD mice. 12-month-old APP/PS1 transgenic and C57 mice were used for studies in vivo. In vitro, organotypic hippocampal slices were cultured. We found that the expression of NLRC3 was downregulated in the brain tissues of APP/PS1 mice. Mice in the APP/PS1 group had a significant attenuation of learning and memory ability compared to the control group, and the ability was improved in APP/PS1 + LV-NLRC3 mice. The expressions of 6E10, GFAP, Iba1, and PI3K in the hippocampus and brains of APP/PS1 mice were significantly higher than those of the control group, while the expressions of NeuN were lower than that of the control group. With the overexpression of NLRC3 in the APP/PS1 + LV-NLRC3 group, the expressions of 6e10, GFAP, Iba1, and PI3K were significantly lower, while the expression of NeuN was significantly higher compared to the APP/PS1 group. NLRC3 colocalized with NeuN. PI3K activation with 740YP increased the expression of GFAP and Iba-1 in the hippocampus with the exogenous NLRC3 protein. We conclude that NLRC3 may play an important role in the development and progression of AD. Downregulation of NLRC3 can lead to the activation of PI3K, resulting in abnormal plaque deposition, glial cell activation, and neuron loss during AD. NLRC3 delays the progression of AD in APP/PS1 mice via inhibiting PI3K activation

    Comprehensive analysis and identification of key genes and signaling pathways in the occurrence and metastasis of cutaneous melanoma

    No full text
    Background Melanoma is a malignant tumor of melanocytes, and the incidence has increased faster than any other cancer over the past half century. Most primary melanoma can be cured by local excision, but metastatic melanoma has a poor prognosis. Cutaneous melanoma (CM) is prone to metastasis, so the research on the mechanism of melanoma occurrence and metastasis will be beneficial to diagnose early, improve treatment, and prolong life survival. In this study, we compared the gene expression of normal skin (N), primary cutaneous melanoma (PM) and metastatic cutaneous melanoma (MM) in the Gene Expression Omnibus (GEO) database. Then we identified the key genes and molecular pathways that may be involved in the development and metastasis of cutaneous melanoma, thus to discover potential markers or therapeutic targets. Methods Three gene expression profiles (GSE7553, GSE15605 and GSE46517) were downloaded from the GEO database, which contained 225 tissue samples. R software identified the differentially expressed genes (DEGs) between pairs of N, PM and MM samples in the three sets of data. Subsequently, we analyzed the gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the DEGs, and constructed a protein-protein interaction (PPI) network. MCODE was used to seek the most important modules in PPI network, and then the GO function and KEGG pathway of them were analyzed. Finally, the hub genes were calculated by the cytoHubba in Cytoscape software. The Cancer Genome Atlas (TCGA) data were analyzed using UALCAN and GEPIA to validate the hub genes and analyze the prognosis of patients. Results A total of 134, 317 and 147 DEGs were identified between N, PM and MM in pair. GO functions and KEGG pathways analysis results showed that the upregulated DEGs mainly concentrated in cell division, spindle microtubule, protein kinase activity and the pathway of transcriptional misregulation in cancer. The downregulated DEGs occurred in epidermis development, extracellular exosome, structural molecule activity, metabolic pathways and p53 signaling pathway. The PPI network obtained the most important module, whose GO function and KEGG pathway were enriched in oxidoreductase activity, cell division, cell exosomes, protein binding, structural molecule activity, and metabolic pathways. 14, 18 and 18 DEGs were identified respectively as the hub genes between N, PM and MM, and TCGA data confirmed the expression differences of hub genes. In addition, the overall survival curve of hub genes showed that the differences in these genes may lead to a significant decrease in overall survival of melanoma patients. Conclusions In this study, several hub genes were found from normal skin, primary melanoma and metastatic melanoma samples. These hub genes may play an important role in the production, invasion, recurrence or death of CM, and may provide new ideas and potential targets for its diagnosis or treatment
    corecore