2,391 research outputs found

    A quasi-static nonlinear analysis for assessing the fire resistance of 3d frames exploiting time-dependent yield surface

    Get PDF
    In this work an automatic procedure for evaluating the axial force-biaxial bending yield surface of reinforced concrete sections in fire is proposed. It provides an accurate time-dependent expression of the yield condition by a section analysis carried out once and for all, accounting for the strength reduction of the materials, which is a function of the fire duration. The equilibrium state of 3D frames with such yield conditions, once discretized using beam finite elements, is formulated as a nonlinear vectorial equation defining a curve in the hyperspace of the discrete variables and the fire duration. A generalized path-following strategy is proposed for tracing this curve and evaluating, if it exists, the limit fire duration, that is the time of exposure which leads to structural collapse. Compared to the previous proposals on the topic, which are limited to local sectional checks, this work is the first to present a global analysis for assessing the fire resistance of 3D frames, providing a time history of the fire event and taking account of the stress redistribution. Numerical examples are given to illustrate and validate the proposal

    Improved simulation of non-Gaussian temperature and polarization CMB maps

    Get PDF
    We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l_max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.Comment: 18 pages, 19 figures. Accepted for publication in ApJS. Simulations can be obtained at http://planck.mpa-garching.mpg.de/cmb/fnl-simulation

    Calculating the local-type fNL for slow-roll inflation with a non-vacuum initial state

    Full text link
    Single-field slow-roll inflation with a non-vacuum initial state has an enhanced bispectrum in the local limit. We numerically calculate the local-type fNL signal in the CMB that would be measured for such models (including the full transfer function and 2D projection). The nature of the result depends on several parameters, including the occupation number N_k, the phase angle \theta_k between the Bogoliubov parameters, and the slow-roll parameter \epsilon. In the most conservative case, where one takes \theta_k \approx \eta_0 k (justified by physical reasons discussed within) and \epsilon\lesssim 0.01, we find that 0 < fNL < 1.52 (\epsilon/0.01), which is likely too small to be detected in the CMB. However, if one is willing to allow a constant value for the phase angle \theta_k and N_k=O(1), fNL can be much larger and/or negative (depending on the choice of \theta_k), e.g. fNL \approx 28 (\epsilon/0.01) or -6.4 (\epsilon/0.01); depending on \epsilon, these scenarios could be detected by Planck or a future satellite. While we show that these results are not actually a violation of the single-field consistency relation, they do produce a value for fNL that is considerably larger than that usually predicted from single-field inflation.Comment: 8 pages, 1 figure. v2: Version accepted for publication in PRD. Added greatly expanded discussion of the phase angle \theta_k; this allows the possibility of enhanced fNL, as mentioned in abstract. More explicit comparisons with earlier wor

    Fock representations of the superalgebra sl(n+1|m), its quantum analogue U_q[sl(n+1|m)] and related quantum statistics

    Full text link
    Fock space representations of the Lie superalgebra sl(n+1m)sl(n+1|m) and of its quantum analogue Uq[sl(n+1m)]U_q[sl(n+1|m)] are written down. The results are based on a description of these superalgebras via creation and annihilation operators. The properties of the underlying statistics are shortly discussed.Comment: 12 pages, PlainTex; to appear in J. Phys. A: Math. Ge

    Gauge-Invariant Quasi-Free States on the Algebra of the Anyon Commutation Relations

    Get PDF
    Let X=R2X=\mathbb R^2 and let qCq\in\mathbb C, q=1|q|=1. For x=(x1,x2)x=(x^1,x^2) and y=(y1,y2)y=(y^1,y^2) from X2X^2, we define a function Q(x,y)Q(x,y) to be equal to qq if x1y1x^1y^1, and to q\Re q if x1=y1x^1=y^1. Let x+\partial_x^+, x\partial_x^- (xXx\in X) be operator-valued distributions such that x+\partial_x^+ is the adjoint of x\partial_x^-. We say that x+\partial_x^+, x\partial_x^- satisfy the anyon commutation relations (ACR) if x+y+=Q(y,x)y+x+\partial^+_x\partial_y^+=Q(y,x)\partial_y^+\partial_x^+ for xyx\ne y and xy+=δ(xy)+Q(x,y)y+x\partial^-_x\partial_y^+=\delta(x-y)+Q(x,y)\partial_y^+\partial^-_x for (x,y)X2(x,y)\in X^2. In particular, for q=1q=1, the ACR become the canonical commutation relations and for q=1q=-1, the ACR become the canonical anticommutation relations. We define the ACR algebra as the algebra generated by operator-valued integrals of x+\partial_x^+, x\partial_x^-. We construct a class of gauge-invariant quasi-free states on the ACR algebra. Each state from this class is completely determined by a positive self-adjoint operator TT on the real space L2(X,dx)L^2(X,dx) which commutes with any operator of multiplication by a bounded function ψ(x1)\psi(x^1). In the case q0\Re q0), we discuss the corresponding particle density ρ(x):=x+x\rho(x):=\partial_x^+\partial_x^-. For q(0,1]\Re q\in(0,1], using a renormalization, we rigorously define a vacuum state on the commutative algebra generated by operator-valued integrals of ρ(x)\rho(x). This state is given by a negative binomial point process. A scaling limit of these states as κ\kappa\to\infty gives the gamma random measure, depending on parameter q\Re q

    Zeolite-based monoliths for water softening by ion exchange/precipitation process

    Get PDF
    In this work, the design of a monolithic softener obtained by geopolymer gel conversion is proposed. The softener used consists in a geopolymeric macroporous matrix functionalized by the co-crystallization of zeolite A and X in mixture. The dual nature of the proposed material promotes a softening process based on the synergistic effect of cation exchange and alkaline precipitation. A softening capacity of 90% and 54% for Ca2+ and Mg2+ respectively was attained in 24&nbsp;h. In fact, the softener reported a Cation Exchange Capacity (CEC) value of 4.43&nbsp;meq&nbsp;g−1. Technical features such as density, porosity and mechanical resistance were also measured. The use of this monolithic softener can improve performance and sustainability of hardness removal from tap water, reducing the production of sludge and adding the possibility to partially regenerate or reuse it

    Oscillations in the bispectrum

    Get PDF
    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.Comment: 6 pages, 2 figures, submitted to JOP: Conference Series, PASCOS 201

    Towards Runtime Verification via Event Stream Processing in Cloud Computing Infrastructures

    Get PDF
    Software bugs in cloud management systems often cause erratic behavior, hindering detection, and recovery of failures. As a consequence, the failures are not timely detected and notified, and can silently propagate through the system. To face these issues, we propose a lightweight approach to runtime verification, for monitoring and failure detection of cloud computing systems. We performed a preliminary evaluation of the proposed approach in the OpenStack cloud management platform, an “off-the-shelf” distributed system, showing that the approach can be applied with high failure detection coverage
    corecore