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Oscillations in the primordial bispectrum

P. Daniel Meerburg
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Amsterdam 1098 SJ,
The Netherlands

E-mail: p.d.meerburg@uva.nl

Abstract. There exist several models of inflation that produce primordial bispectra that
contain a large number of oscillations. In this paper we discuss these models, and aim at
finding a method of detecting such bispectra in the data. We explain how the recently proposed
method of mode expansion of bispectra might be able to reconstruct these spectra from separable
base functions. Extracting these base functions from the data might then lead to observational
constraints on these models.

1. Introduction
The aim of this review is to summarize the work done in [1], as presented at PASCOS 2010,
Valencia in July of this year. In this work we investigate the method of mode expansion [2, 3]
for primordial bispectra that contain (a large number of) oscillations. The discussed inflationary
models/secanrios include features in the inflaton potential [4, 5], resonant models [5, 6, 7], and
models with a slight modification of the initial vacuum state [8, 9].

Although these models generally predict quite large primordial bispectral amplitude (i.e.
fNL), they are hard to constrain because their shapes are highly oscillatory (typically they also
predict a large number of oscillations on top of the baryonic acoustic collations in the power
spectrum, see e.g. [6, 10]) A way to inquire unconstrained types of bispectra is to compare them
with constrained types, such as local [11, 12], equilateral [13] and orthogonal [14] type bispectra.
The comparison can be qualified using the correlation function between two shapes in comoving
momentum space defined as [2, 15]

FX ? FY ≡
∫

∆k

dk1dk2dk3wkSXSY , (1)

where S is the shape of the bispectrum and wk is a weight function, which was chosen as
wk = 1/kt in [3] to increase resemblance with the Fisher matrix (correlation) found in multipole
space. The integral runs over the tetrahedral domain which is set by the triangle constraints
together with the maximal observable kmax:

ka ≤ kb + kc for ka ≥ kb, kc

ka, kb, kc ≤ kmax,

where a, b, c = {1, 2, 3}, a 6= b 6= c. Note that for optimal estimates one should in fact consider
the correlation function in multipole space, however this is computationally challenging and as
a first estimate the above correlator is time efficient and quite precise [3].
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Most constrained bispectra have a thing in common: they are relatively smooth.
Consequently when comparing these to highly oscillating bispectra one finds that resulting
constraints become relatively weak. In order to improve the analysis of these bispectra and
the resulting bounds on associated physical parameters, one should directly constrain these
models in the data. Unfortunately constraining bispectra from the data is very time consuming
and computationally challanging, in particular since these models have two additional free
parameters beside their amplitude: the phase (γ) and the frequency (ωx). In order to search for
signatures in the data, one should scan through a range of possible frequencies and phases since
it is possible to completely miss the signal if one searches only for one specific/fixed frequency
and phase. This compromises the analysis for these types of spectra to the extend that one
should to try to consider other means.

In a recent paper [2, 3], the authors propose a very elegant method of constraining any type
of bispectra directly from the data. The idea is to expand a given (theoretical) bispectrum into
a set of orthogonal basis functions Rn, i.e.

S(x1, x2, x3) '
N∑

n=0

αnRn(x1, x2, x3). (2)

where xi = ki/kmax, with kmax the largest observable k in the CMB, while S(x1, x2, x3), known
as the (model-dependent) shape of the bispectrum, is defined via the primordial three point
correlation function:

〈ζ~k1
ζ~k2
ζ~k3
〉 = (2π)7fNL∆2δK

(
3∑

i=1

ki

)
S(k1, k2, k3)
k2

1k
2
2k

2
3

. (3)

Here ζ is the gauge invariant curvature perturbation (ζ = −Hδφ/φ̇0) which is constant after
horizon exit, ∆ is the amplitude of the primordial power spectrum (i.e. for single field slow-roll
∆ = H2/8πε, where H is the Hubble rate at the end of inflation and ε the slow-roll parameter).
fNL is the amplitude of the primordial bispectrum and its value depend on the model under
consideration. If the set of Rn is optimally constructed and S is relatively smooth, the number of
modes necessary to reconstruct the spectrum is low. For example to reconstruct the bispectrum
predicted by Dirac-Born-Infeld models of inflation (equilateral type) only n = 5 modes lead to
a 99% correlation between the original and the reconstructed shape (in k space) [1, 3]. The
advantage of this method of direct measurement is obvious. The constructed mode functions
are aimed at being able to reconstruct a large number of bispectra. Measuring these modes
in the data could therefore constrain a large number of models at once (see [16]). As such,
mode expansion can be considered an optimal way of extracting the bispectrum from the data,
without focussing on specific shape (e.g. local and equilateral).

In the following (sec. 2) we will use the method of mode expansion to a class of primordial
bispectra that oscillate rapidly. We compare the existing set of mode functions, based on
polynomials to a new set of base functions, based on Fourier functions. We show that the
latter basis is more efficient in expanding oscillatory type bispectra. We will discuss (sec. 3)
some other related observations concerning the expansion, and explain how these could be useful
in future data analysis. We will conclude in section 4.

2. Models and their expansion
In [1] we investigated the ability to reconstruct inflationary bispectra that are not smooth using
Rn bispectral basis functions. We investigated three different shapes predicted by different
physics:
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Figure 1: The correlation of SRes and SnBD with their respective reconstruction using Rn basis
functions. The correlation is shown for three different frequencies: ωr,v = 20 (solid), 40 (dashed)
and 60 (dot-dashed).

SFeat = k−6
max sin(ωfxt + γ1), (4)

SRes = k−6
max sin(ωr lnxt + γ2), (5)

SnBD =
ωvk

−6
max

x1x2x3

∑
j

1
x3

j

1
2

cos
(
ωv

xj+1+xj+2

xj
+ γ3

)
ωv

(
xj+1+xj+2

xj
− 1

) −
sinωv

(
ωv

xj+1+xj+2

xj
+ γ3

)
ω2

v

(
xj+1+xj+2

xj
− 1

)2

cos δ − cos
(
ωv

xj+1+xj+2

xj
+ γ3

)
ω3

v

(
xj+1+xj+2

xj
− 1

)3

 . (6)

For details explaining how to compute these bispectra and the non-Gaussian amplitude fNL for
each of these models we would like to refer to [1, 4, 5, 6, 7, 8]. Generally, the various frequencies
ω are model dependent as is the phase γ. Typically ω � O(1).

As a first attempt we take the Rn basis functions generated to be orthonormal on the
tetrahedral domain. The details of Rn mode construction on the this domain can be found
in [3, 16]. As expected, it requires many modes to establish significant correlation between
the reconstructed shape Sr and the predicted shape Sp. In figure 1 we show the various
reconstruction attempts of eq. (5) and eq. (6) for several frequencies.

The Rn basis functions are based on polynomials, e.g. R3 ∝ x3
1 + x3

2 + x3
3 + c and higher

n correspond to larger powers of xi. Such basis functions are not particularly optimized for
oscillatory bispectra. In [1] we considered another set of mode functions, denoted Fn, based on
e−iωx (Fourier reconstruction). It must be noted that SFeat is already of this form and therefore
we did not consider this model in the expansion. To further investigate the reconstructive power
of Fn we considered three additional toy model shapes:

S1 =
(

sin
ω1

x1 + 1
+ sin

ω1

x2 + 1
+ sin

ω1

x3 + 1

)
, (7)

S2 = sinω2x1x2x3, (8)

S3 =
(

sin
ω3xt

x1 + 1
+ sin

ω3xt

x2 + 1
+ sin

ω3xt

x3 + 1

)
. (9)
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(a) Mode expansion for resonant type non-
Gaussianity (eq. (5)) using the Fn basis
functions. We considered the following frequecnies:
frequencies ωr = 20 (blue, solid), 40 (purple,
dashed), 60 (yellow, dot-dashed) and 80 (green,
solid).

(b) Mode expansion for SnBD (eq.(6)) using the
same mode functions as in 2a. Here we only
considered two frequencies: ωv = 20 (blue, solid)
and 40 (purple, dashed). The correlation seems to
saturate at around 20%.

(c) Mode expansion comparison between Fn (top)
and Rn (bottom) with a fixed frequency for S1.

(d) Mode expansion comparison between Fn (top)
and Rn (bottom) with a fixed frequency for S2.

Figure 2: Mode expansion for various models.

We have plotted the number of modes versus the total correlation between the original model
and the expansion for SRes, SnBD, S1 and S2 in figure 2. As can be seen, for most of these
bispectra reconstruction using Fn versus Rn is much more effective, reducing the number of
modes to reach similar correlation by a factor of 5. However, for nSnBD, Fn reconstruction is
not improved. The possible explanation why Fourier expansion is even worse than polynomial
expansion for this type of bispectrum, seems to be related to the rapid change in frequency in a
fixed direction. Fourier expansion is optimized for scale invariant frequencies. The polynomial
expansion is simply optimized in reproducing as many different shapes as possible, explaining
the observation that it is able to slowly increase correlation with the addition of modes while
Fourier expansion seems to saturate around 20%. Given the large enhancement of the amplitude
fnBD

NL of this type of non-Gaussianity (which scales as ω3
v , see e.g. [8], one might still be able to

extract some information from that data even with such small correlations [17].

3. Discussion
In general the expansion of the oscillatory primordial bispectra becomes unavailing for really
large frequencies, both using Fn and Rn. There are however a number of interesting observations
which could make constraining and expanding oscillating bispectra much more viable. First of all
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the expansion in mode functions of the resonant bispectrum has a very discrete character; if you
consider fig. 2a and fig 2c only few modes actually contribute significantly to the convergence
of the correlation. One could only try to expand the spectrum only in those modes, which
could significantly reduce the number of modes necessary. Since the important modes seem
to be related to the direction of propagation of the oscillation, we find that this conclusion is
independent of the phase. In other words, only the value of the weights (αn) will differ, not the
mode numbers (n) that are relevant for the expansion, e.g. the resonant shape SRes appears
to propegate in the kt direction. As such only those mode numbers have a non-zero α that
corresponds to base mode functions that contain Fn = {1, einkt}.

Secondly, given the discreteness of the correlation it is (obviously) not necessary to constrain
all mode functions in the CMB data to get an indication of there is an oscillatory three point
signal and what the possible frequency of this signal might be. For resonant non-Gaussianities
we only need to consider those modes that have a significantly large α, and the measured value
of the weights α would be a direct measure of the frequency. If one could extract the multipole
projected Fourier modes that are responsible for most of the weight, this could in principle
provide signatures of primordial bispectra with frequencies much larger than ωr = 80 shown in
fig. 2a. Measuring modes up to e.g. n = 100 would not only provide information about the
frequency of the signal, but could also hint on the type of primordial bispectrum.

4. Conclusion
We have investigated the viability of mode expansion for bispectra that contain oscillations. The
motivation for investigating such features and their mode expansion, is that recently it has been
shown that several scenarios or mechanisms can produce such features not only in the power
spectrum, but also in the bispectrum. The appearance of oscillations in the bispectrum makes
comparison with existing bispectral constraints, based on smooth bispectra, very inefficient and
there exists substantial room for improvement. Polynomial expansion has been proposed to
achieve factorization of a given theoretical bispectrum and we have investigated this for three
different models. As expected, the larger the frequency of the primordial bispectrum, the more
modes it requires to establish a reasonable approximation of the original spectrum. Fortunately,
both the resonant and non-BD bispectrum have an amplitudes that scale with their frequency.
Therefore, a small improvement in correlation could lead to a significant improvement in the
ability to constrain the model by measuring these modes in the data and reconstructing the
primordial signal.

Complementarily, we have proposed a different basis expansion, based on Fourier functions
instead of polynomials. Such expansion is more relevant for resonant and non-BD scenario,
since the feature bispectrum can already be transformed into Fourier modes analytically, using
identities. We have shown that Fourier modes are much more efficient for the resonant
bispectrum, reducing the number of modes necessary to establish the same correlation as
polynomial modes by at least a factor of 5. For the non-BD bispectrum both Fourier expansion
and polynomial expansion are difficult. In the case of Fourier expansion correlation increases fast
with the addition of modes, but quickly saturates to maximum of about 20%. We believe that
this is due to the exact form of the bispectrum, which has many small features near the edges of
the tetrahedral domain. One might hope that some of these very small features are washed out
when you compute the multipole equivalent. We hope to investigate this in a future attempt. In
addition we have investigated three toy-spectra, not based on any particular model, which have
a different oscillating orientation compared to the three theoretical models. Expanding these in
Fourier modes show similar improvement (only two have been shown) compared to polynomial
expansion as the resonant bispectrum. In general, we therefore belief that Fourier expansion
is much more effective in the expansion of oscillatory spectra compared to polynomial basis
expansion.
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We showed that for resonant inflation only a limited number of modes contribute significantly
in reproducing the original bispectrum. This would allow to consider (observationally) only
those modes that contribute substantially. This holds independent of the phase and frequency
of the signal and is due to the specific form of this bispectrum, which oscillates (primarily) in
the kt direction. Because the modes that are important for the reconstruction of the original
bispectrum are independent of the frequency, this also implies that when one would observe these
modes in the data one could in fact find evidence for much larger frequencies than discussed
here, simply because for larger frequencies these modes will also matter but their respective
weight (α) will be smaller. Despite the fact that we could not optimally expand the non-BD
bispectrum using Fourier modes, we did look into the three toy-sepctra. We found that other
modes are important. Moreover, the modes that are important directly represent the orientation
of the oscillating spectrum and could therefore discriminate between different bispectra quite
effectively. If this conclusion holds after forward projection into multipole space, measuring a
number of Fourier mode functions in the CMB data would present an efficient way of deducing
whether oscillations are present in the data and could give both an indication of the frequency
and the shape of the primordial bispectrum.
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