150 research outputs found
Molecular Epidemiology of Inflammation: Link with Type 2 Diabetes and Coronary Heart Disease
This thesis presents the genetics and epigenetics of inflammation, and the link with type 2 diabetes and cardiovascular disease is investigated
Dissecting the Association Between Inflammation, Metabolic Dysregulation, and Specific Depressive Symptoms: A Genetic Correlation and 2-Sample Mendelian Randomization Study.
IMPORTANCE: Observational studies highlight associations of C-reactive protein (CRP), a general marker of inflammation, and interleukin 6 (IL-6), a cytokine-stimulating CRP production, with individual depressive symptoms. However, it is unclear whether inflammatory activity is associated with individual depressive symptoms and to what extent metabolic dysregulation underlies the reported associations. OBJECTIVE: To explore the genetic overlap and associations between inflammatory activity, metabolic dysregulation, and individual depressive symptoms. GWAS DATA SOURCES: Genome-wide association study (GWAS) summary data of European individuals, including the following: CRP levels (204 402 individuals); 9 individual depressive symptoms (3 of which did not differentiate between underlying diametrically opposite symptoms [eg, insomnia and hypersomnia]) as measured with the Patient Health Questionnaire 9 (up to 117 907 individuals); summary statistics for major depression, including and excluding UK Biobank participants, resulting in sample sizes of 500 199 and up to 230 214 individuals, respectively; insomnia (up to 386 533 individuals); body mass index (BMI) (up to 322 154 individuals); and height (up to 253 280 individuals). DESIGN: In this genetic correlation and 2-sample mendelian randomization (MR) study, linkage disequilibrium score (LDSC) regression was applied to infer single-nucleotide variant-based heritability and genetic correlation estimates. Two-sample MR tested potential causal associations of genetic variants associated with CRP levels, IL-6 signaling, and BMI with depressive symptoms. The study dates were November 2019 to April 2020. RESULTS: Based on large GWAS data sources, genetic correlation analyses revealed consistent false discovery rate (FDR)-controlled associations (genetic correlation range, 0.152-0.362; FDR P = .006 to P < .001) between CRP levels and depressive symptoms that were similar in size to genetic correlations of BMI with depressive symptoms. Two-sample MR analyses suggested that genetic upregulation of IL-6 signaling was associated with suicidality (estimate [SE], 0.035 [0.010]; FDR plus Bonferroni correction P = .01), a finding that remained stable across statistical models and sensitivity analyses using alternative instrument selection strategies. Mendelian randomization analyses did not consistently show associations of higher CRP levels or IL-6 signaling with other depressive symptoms, but higher BMI was associated with anhedonia, tiredness, changes in appetite, and feelings of inadequacy. CONCLUSIONS AND RELEVANCE: This study reports coheritability between CRP levels and individual depressive symptoms, which may result from the potentially causal association of metabolic dysregulation with anhedonia, tiredness, changes in appetite, and feelings of inadequacy. The study also found that IL-6 signaling is associated with suicidality. These findings may have clinical implications, highlighting the potential of anti-inflammatory approaches, especially IL-6 blockade, as a putative strategy for suicide prevention.Wellcome Trust (grant code: 201486/Z/16/Z
Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: the Rotterdam Study
The immune response involved in each phase of type 2 diabetes (T2D) development might be different. We aimed to identify novel inflammatory markers that predict progression from normoglycemia to pre-diabetes, incident T2D and insulin therapy. We used plasma levels of 26 inflammatory markers in 971 subjects from the Rotterdam Study. Among them 17 are novel and 9 previously studied. Cox regression models were built to perform survival analysis. Main Outcome Measures: During a follow-up of up to 14.7 years (between April 1, 1997, and Jan 1, 2012) 139 cases of pre-diabetes, 110 cases of T2D and 26 cases of insulin initiation were identified. In age and sex adjusted Cox models, IL13 (HR = 0.78), EN-RAGE (1.30), CFH (1.24), IL18 (1.22) and CRP (1.32) were associated with incident pre-diabetes. IL13 (0.62), IL17 (0.75), EN-RAGE (1.25), complement 3 (1.44), IL18 (1.35), TNFRII (1.27), IL1ra (1.24) and CRP (1.64) were associated with incident T2D. In multivariate models, IL13 (0.77), EN-RAGE (1.23) and CRP (1.26) remained associated with pre-diabetes. IL13 (0.67), IL17 (0.76) and CRP (1.32) remained associated with T2D. IL13 (0.55) was the only marker associated with initiation of insulin therapy in diabetics. Various inflammatory markers are associated with progression from normoglycemia to pre-diabetes (IL13, EN-RAGE, CRP), T2D (IL13, IL17, CRP) or insulin therapy start (IL13). Among them, EN-RAGE is a novel inflammatory marker for pre-diabetes, IL17 for incident T2D and IL13 for pre-diabetes, incident T2D and insulin therapy start
Bivariate genome-wide association study identifies novel pleiotropic loci for lipids and inflammation
Background: Genome-wide association studies (GWAS) have identified multiple genetic loci for C-reactive protein (CRP) and lipids, of which some overlap. We aimed to identify genetic pleiotropy among CRP and lipids in order to better understand the shared biology of chronic inflammation and lipid metabolism. Results: In a bivariate GWAS, we combined summary statistics of published GWAS on CRP (n = 66,185) and lipids, including LDL-cholesterol, HDL-cholesterol, triglycerides, and total cholesterol (n = 100,184), using an empirical weighted linear-combined test statistic. We sought replication for novel CRP associations in an independent sample of 17,743 genotyped individuals, and performed in silico replication of novel lipid variants in 93,982 individuals. Fifty potentially pleiotropic SNPs were identified among CRP and lipids: 21 for LDL-cholesterol and CRP, 20 for HDL-cholesterol and CRP, 21 for triglycerides, and CRP and 20 for total cholesterol and CRP. We identified and significantly replicated three novel SNPs for CRP in or near CTSB/FDFT1 (rs10435719, Preplication: 2.6 × 10−5), STAG1/PCCB (rs7621025, Preplication: 1.4 × 10−3) and FTO (rs1558902, Preplication: 2.7 × 10−5). Seven pleiotropic lipid loci were replicated in the independent set of MetaboChip samples of the Global Lipids Genetics Consortium. Annotating the effect of replicated CRP SNPs to the expression of nearby genes, we observed an effect of rs10435719 on gene expression of FDFT1, and an effect of rs7621025 on PCCB. Conclusions: Our large scale combined GWAS analysis identified numerous pleiotropic loci for CRP and lipids providing further insight in the genetic interrelation between lipids and inflammation. In addition, we provide evidence for FDFT1, PCCB and FTO to be associated with CRP levels. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2712-4) contains supplementary material, which is available to authorized users
ADAMTS13 activity as a novel risk factor for incident type 2 diabetes mellitus: a population-based cohort study
Aims/hypothesis: ADAMTS13 is a protease that breaks down von Willebrand factor (VWF) multimers into smaller, less active particles. VWF has been associated with an increased risk of incident type 2 diabetes mellitus. Here, we determine whether ADAMTS13 activity and VWF antigen are associated with incident diabetes. Methods: This study included 5176 participants from the Rotterdam Study, a prospective population-based cohort study. Participants were free of diabetes at baseline and followed up for more than 20 years. Cox proportional hazards models were used to examine the association of ADAMTS13 activity and VWF antigen with incident diabetes. Results: ADAMTS13 activity was associated with an increased risk of incident diabetes (HR 1.17 [95% CI 1.08, 1.27]) after adjus
Genetic analysis of over half a million people characterises C-reactive protein loci
Chronic low-grade inflammation is linked to a multitude of chronic diseases. We report the largest genome-wide association study (GWAS) on C-reactive protein (CRP), a marker of systemic inflammation, in UK Biobank participants (N = 427,367, European descent) and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (total N = 575,531 European descent). We identify 266 independent loci, of which 211 are not previously reported. Gene-set analysis highlighted 42 gene sets associated with CRP levels (p ≤ 3.2 ×10−6) and tissue expression analysis indicated a strong association of CRP related genes with liver and whole blood gene expression. Phenome-wide association study identified 27 clinical outcomes associated with genetically determined CRP and subsequent Mendelian randomisation analyses supported a causal association with schizophrenia, chronic airway obstruction and prostate cancer. Our findings identified genetic loci and functional properties of chronic low-grade inflammation and provided evidence for causal associations with a range of diseases
Lifetime risk to progress from pre-diabetes to type 2 diabetes among women and men: comparison between American
INTRODUCTION: Pre-diabetes, a status conferring high risk of overt diabetes, is defined differently by the American Diabetes Association (ADA) and the WHO. We investigated the impact of applying definitions of pre-diabetes on lifetime risk of diabetes in women and men from the general population. RESEARCH DESIGN AND METHODS: We used data from 8844 women without diabetes and men aged ≥45 years from the prospective population-based Rotterdam Study in the Netherlands. In both gender groups, we calculated pre-diabetes prevalence according to ADA and WHO criteria and estimated the 10-year and lifetime risk to progress to overt diabetes with adjustment for competing risk of death. RESULTS: Out of 8844 individuals, pre-diabetes was identified in 3492 individuals (prevalence 40%, 95% CI 38% to 41%) according to ADA and 1382 individuals (prevalence 16%, 95% CI 15% to 16%) according to WHO criteria. In both women and men and each age category, ADA prevalence estimates doubled WHO-defined pre-diabetes. For women and men aged 45 years having ADA-defined pre-diabetes, the 10-year risk of diabetes was 14.2% (95% CI 6.0% to 22.5%) and 9.2% (95% CI 3.4% to 15.0%) compared with 23.2% (95% CI 6.8% to 39.6%) and 24.6% (95% CI 8.4% to 40.8%) in women and men with WHO-defined pre-diabetes. At age 45 years, the remaining lifetime risk to progress to overt diabetes was 57.5% (95% CI 51.8% to 63.2%) vs 80.2% (95% CI 74.1% to 86.3%) in women and 46.1% (95% CI 40.8% to 51.4%) vs 68.4% (95% CI 58.3% to 78.5%) in men with pre-diabetes according to ADA and WHO definitions, respectively. CONCLUSION: Prevalence of pre-diabetes differed considerably in both women and men when applying ADA and WHO pre-diabetes definitions. Women with pre-diabetes had higher lifetime risk to progress to diabetes. The lifetime risk of diabetes was lower in women and men with ADA-defined pre-diabetes as compared with WHO. Improvement of pre-diabetes definition considering appropriate sex-specific and age-specific glycemic thresholds may lead to better identification of individuals at high risk of diabetes
An Integrative Cross-Omics Analysis of DNA Methylation Sites of Glucose and Insulin Homeostasis
Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D
- …