20 research outputs found

    Integrated Borehole, Radar, and Seismic Velocity Analysis Reveals Dynamic Spatial Variations Within a Firn Aquifer in Southeast Greenland

    Get PDF
    Perennial water storage in firn aquifers has been observed within the lower percolation zone of the southeast Greenland ice sheet. Spatially distributed seismic and radar observations, made ~50 km upstream of the Helheim Glacier terminus, reveal spatial variations of seismic velocity within a firn aquifer. From 1.65 to 1.8 km elevation, shear‐wave velocity (Vs) is 1,290 ± 180 m/s in the unsaturated firn, decreasing below the water table (~15 m depth) to 1,130 ± 250 m/s. Below 1.65 km elevation, Vs in the saturated firn is 1,270 ± 220 m/s. The compressional‐to‐shear velocity ratio decreases in the downstream saturated zone, from 2.30 ± 0.54 to 2.01 ± 0.46, closer to its value for pure ice (2.00). Consistent with colocated firn cores, these results imply an increasing concentration of ice in the downstream sites, reducing the porosity and storage potential of the firn likely caused by episodic melt and freeze during the evolution of the aquifer. Plain Language Summary An integrated geophysical analysis of seismic, radar, and borehole measurements has been completed over a firn aquifer in southeast Greenland. We show the stiffness of the aquifer increases at lower elevations, closer to sea level, which leads to a decrease in pore space for the meltwater to be stored. This corresponds to an increase in ice content within the firn at lower elevations, as observed in borehole measurements, and likely caused by the meltwater refreezing within and below the aquifer

    Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf

    Get PDF
    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves1,2 causing grounded glaciers to accelerate3 and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line4, which in the recent past has led to the disintegration of the most northerly ice shelves5,6. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwaterinduced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing7

    Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula

    Get PDF
    The northern Antarctic Peninsula is currently undergoing rapid atmospheric warming. Increased glacier-surface melt during the twentieth century has contributed to ice-shelf collapse and the widespread acceleration, thinning and recession of glaciers. Therefore, glaciers peripheral to the Antarctic Ice Sheet currently make a large contribution to eustatic sea-level rise, but future melting may be offset by increased precipitation. Here we assess glacier-climate relationships both during the past and into the future, using ice-core and geological data and glacier and climate numerical model simulations. Focusing on Glacier IJR45 on James Ross Island, northeast Antarctic Peninsula, our modelling experiments show that this representative glacier is most sensitive to temperature change, not precipitation change. We determine that its most recent expansion occurred during the late Holocene a Little Ice Age' and not during the warmer mid-Holocene, as previously proposed. Simulations using a range of future Intergovernmental Panel on Climate Change climate scenarios indicate that future increases in precipitation are unlikely to offset atmospheric-warming-induced melt of peripheral Antarctic Peninsula glaciers

    Формування та розвиток загальної теорії стійкості (середина XVIII ст. — 30-і рр. ХХ ст.)

    Get PDF
    У статті розглянуто історію вивчення стійкості (середина XVIII — початок XX ст., світовий контекст). Досліджено внесок А. Пуанкаре та О.М. Ляпунова в розвиток загальної теорії стійкості. Показано розвиток їх ідей у працях російських та українських учених.В статье рассмотрена история изучения устойчивости (середина XVIII — начало XX в., мировой контекст). Исследован вклад французского ученого А. Пуанкаре и русского ученого А.М. Ляпунова в развитие общей теории устойчивости. Показано дальнейшее развитие их идей в трудах русских и украинских ученых.The history of basic research in stability is given. Contributions from H.Poincaré, a French mathematician, mechanic and physicist, and O. Lapunov, a soviet mathematician and mechanic (working in the Kharkiv university) to development of the general theory of stability are shown. In 1892—1902, O. Lyapunov constructed an original robust mathematical apparatus to study stability of motion. Development of ideas and methods of H.Poincar of H.Poincar³e and O. Lapunov in works of later Ukrainian and Russian scientists is shown
    corecore