47 research outputs found

    Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects

    Get PDF
    This study aimed at investigating both the individual and combined effects of cadmium (Cd) and arsenate (AsV) on the physiology and behaviour of the Crustacean Gammarus pulex at three temperatures (5, 10 and15°C). G. pulex was exposed during 96 h to (i) two [Cd] alone, (ii) two [AsV] alone, and (iii) four combinations of [Cd] and [AsV] to obtain a complete factorial plane. After exposure, survival, [AsV] or [Cd] in body tissues, behavioural (ventilatory and locomotor activities) and physiological responses (iono-regulation of [Na+] and [Cl−] in haemolymph) were examined. The interactive effects (antagonistic, additive or synergistic) of binary mixtures were evaluated for each tested temperature using a predictive model for the theoretically expected interactive effect of chemicals. In single metal exposure, both the internal metal concentration in body tissues and the mortality rate increased along metallic gradient concentration. Cd alone significantly impaired both [Na+] and [Cl−] while AsV alone had a weak impact only on [Cl−]. The behavioural responses of G. pulex declined with increasing metal concentration suggesting a reallocation of energy from behavioural responses to maintenance functions. The interaction between AsV and Cd was considered as ‘additive’ for all the tested binary mixtures and temperatures (except for the lowest combination at 10°C considered as “antagonistic”). In binary mixtures, the decrease in both ventilatory and locomotor activities and the decline in haemolymphatic [Cl−] were amplified when respectively compared to those observed with the same concentrations of AsV or Cd alone. However, the presence of AsV decreased the haemolymphatic [Na+] loss when G. pulex was exposed to the lowest Cd concentration. Finally, the observed physiological and behavioural effects (except ventilation) in G. pulex exposed to AsV and/or Cd were exacerbated under the highest temperature. The discussion encompasses both the toxicity mechanisms of these metals and their interaction with rising temperature

    The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    Get PDF
    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient

    Effects of cortisol treatment on the salinity tolerance of Persian sturgeon, Acipenser persicus Juveniles

    No full text
    The freshwater shrimp, Macrobrachium nipponense is an invasive species which has recently been reported in Anzali Wetland, Iran. It exhibited good tolerance and adaption in this wetland ecosystem. This study examined certain aspects of feeding of M. nipponense in three habitats of this wetland. Shrimps were randomly sampled from April 2016 to March 2017. The stomach contents were obtained from 367 specimens ranging in length from 4.2 cm to 6.9 cm. The empty stomach index (VI) showed that this shrimp was a voracious (0 ≀ VI < 20) species in all seasons expect winter, when 99% of the specimens had empty stomachs. Fourteen dietary items were categorized in the three habitats of the wetland, with phytoplankton, mollusks and detritus forms being the dominant food items in the western, central and eastern habitats respectively. The feeding precedence index (FP) revealed that the most abundant portion of food was subsidiary one (50 ≄ FP ≄ 10) and the highest proportions of subsidiary food were phytoplankton (24.5%), gastropods (34%) and detritus (29.11%) in the western, central and eastern habitats, respectively. Omnivorous feeding is one of the reasons for the success, high tolerance and adaptation of M. nipponense in the Anzali Wetland ecosystem

    Microbial synthesis and characterization of a bio-nanocomposite

    No full text
    International audienc
    corecore