108 research outputs found

    Persistent organic pollutants in Swedish first-time mothers and effects on infant health

    Get PDF
    Humans are exposed to a variety of persistent organic pollutants (POPs) that have been spread to the environment because of various human activities. Food is the main source of exposure to most POPs. Many POPs are lipi d - soluble, accumulate in the hu man body and are easily transferred to the fetus and to breastfed infants through breast milk. POPs have been shown to cause a number of adv erse effects in animals, includ ing effects on reproduction, development and on endocrine, nervous and immune systems. The overall aims of this thesis were to quantify body burdens of POPs in pregnant and nursing women in Sweden and to study whether current mat ernal, fetal or infant exposure to POPs is associated with birth weight or markers of thyroid function. First - time mothers were recruited in Uppsala, Sweden between 1996 and 2010 (POPUP cohort). Samples (breast milk or blood) from the participating women were analysed for polychlorinated biphenyls (PCBs), polychlorinated dibenzo - p - dioxin and dibenzo - furans ( P CDD/Fs) and polybrominated diphenyl ethers (PBDEs). Thyroid hormones were analysed in maternal and infant blood. Data on lifestyle factors and diet were collected by interviews and questionnaires. The results showed that levels of PCBs and PCDD/Fs in brea st milk decreased with 4 - 8% per year during the study period. Temporal trends for PBDEs varied depending on congener studied, with decreasing levels of BDE - 47, - 99 and - 100 (5 - 10% per year) and slightly increasing levels of BDE - 153 (1% per year). High mate rnal age and fast weight loss after delivery predicted higher levels of PCBs and PCDD/Fs in breast milk, whereas a high pre - pregnancy body mass index and large weight gain during pregnancy predicted lower levels. Women who were breastfed during infancy, gr ew up on the east coast of Sweden and had a high consumption of contaminated fatty Baltic fish during the year before pregnancy had higher levels of some POPs in breast milk. Prenatal exposure to di - ortho PCBs (estimated by breast milk levels) was signific antly associated with higher birth weight, whereas breast milk levels of PBDEs were associated with lower birth weight. The mean difference in birth weight between the 25 th and 75 th percentiles of exposure was approximately 100 g for di - ortho PCBs and - 80 g for PBDEs. Associations bet ween exposure to PCBs, PCDD/Fs and PBDE and thyroid hormone levels in mothers during pregnancy and in infants after delivery were weak and non - significant in most cases. However, a higher maternal body burden of PCDD/Fs was as sociated with lower maternal levels of triiodothyronine (T3). This association was similar in early and late pregnancy, which strengthens its reliability. Altogether, this thesis provides knowledge about exposure to POPs in Swedish first - time mothers that is useful in risk assessments of POPs in food. The margins between current body burdens of POPs and the levels tolerable from a health perspective are in some cases small or non - existent . In addition, the observed associations between POP exposure and birt h weight and thyroid hormone status may be of importance for public health. Hence, it is desirable that body burdens of PCBs, PCDD/Fs and PBDEs in Swedish women continue to decrease. Efforts to reduce contamination of the environment and of the food chain should therefore be c ontinued. Monitoring of POP levels in breast milk is an important tool to follow - up human POP exposure

    Prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish cohort with background exposure: a cross-sectional study

    Get PDF
    BACKGROUND: Prenatal exposure to persistent organic pollutants, e.g. polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) has been suggested to negatively affect birth weight although epidemiological evidence is still inconclusive. We investigated if prenatal exposure to PCBs and PBDEs is related to birth weight in a Swedish population with background exposure. METHODS: Breast milk was sampled during the third week after delivery from first-time mothers in Uppsala county, Sweden 1996–2010 (POPUP cohort) (N = 413). Samples were analysed for di-ortho PCBs (CB-138, 153, 180) and tetra- to hexa- brominated PBDEs (BDE-47, 99, 100, 153). Simple and multiple linear regression models were used to investigate associations between lipid-adjusted, ln-transformed PCB and PBDE concentrations, and birth weight. Covariates included in the multivariate regression model were PCB and PBDE exposure, maternal age, pre-pregnancy BMI, weight gain during pregnancy, education, smoking, gender of the infant and gestational length. The effect of including fish consumption was also investigated. RESULTS: In the multivariate model, prenatal exposure to di-ortho PCBs was significantly associated with increased birth weight (β = 137; p = 0.02). The result did not change when gestational length was added to the model. An inverse association between PBDE(4) (sum of BDE-47, -99, -100 and −153) and birth weight was observed in the multivariate model including gestational length (β = −106; p = 0.04). Maternal pre-pregnancy BMI and weight gain during pregnancy were important confounders of the association between di-ortho PCBs and birth weight. The associations were not alleviated after adjustment for fish consumption, a major source of PCB and PBDE exposure. The observed associations were stronger for boys than for girls. CONCLUSIONS: Our results indicate that prenatal exposure to di-ortho PCBs and PBDE(4) may influence birth weight in different directions, i.e. PCB exposure was associated with higher birth weight and PBDE exposure with lower birth weight. Maternal pre-pregnancy BMI and weight gain during pregnancy were important confounders that may hide positive association between di-ortho PCB exposure and birth weight if they are not included in the statistical model. We speculate that even small PCB- and PBDE-induced shifts in the distribution of birth weight may influence future public health in populations with background exposure

    Perfluoroalkyl acids (PFAAs) in children’s serum and contribution from PFAA-contaminated drinking water

    Get PDF
    We investigated associations between serum perfluoroalkyl acid (PFAA) concentrations in children aged 4, 8, and 12 years (sampled in 2008–2015; n = 57, 55, and 119, respectively) and exposure via placental transfer, breastfeeding, and ingestion of PFAA-contaminated drinking water. Sampling took place in Uppsala County, Sweden, where the drinking water has been historically contaminated with perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA). PFOS showed the highest median concentrations in serum (3.8–5.3 ng g–1 serum), followed by PFHxS (1.6–5.0 ng g–1 serum), PFOA (2.0–2.5 ng g–1 serum), and perfluorononanoate (PFNA) (0.59–0.69 ng g–1 serum) in children. Including all children, serum PFOA, PFHxS, and PFOS concentrations in children increased 10, 10, and 1.3% (adjusted mean), respectively, per unit (ng g–1 serum) of increase in the maternal serum level (at delivery), the associations being strongest for 4 year-old children. PFHxS and PFOS significantly increased 3.9 and 3.8%, respectively, per month of nursing, with the highest increase for 4 year-olds. PFOA, PFBS, PFHxS, and PFOS increased 1.2, 207, 7.4, and 0.93%, respectively, per month of cumulative drinking water exposure. Early life exposure to PFOA, PFHxS, and PFOS is an important determinant of serum concentrations in children, with the strongest influence on younger ages. Drinking water with low to moderate PFBS, PFHxS, PFOS, and PFOA contamination is an important source of exposure for children with background exposure from other sources

    Determinants of serum concentrations of perfluoroalkyl acids (PFAAs) in school children and the contribution of low-level PFAA-contaminated drinking water

    Get PDF
    Little is known about the demographic/life-style/physiological determinants explaining the variation of serum perfluoroalkyl acid (PFAA) concentrations in children. We identified significant determinants in children and investigated the influence of low-level PFAA-contaminated drinking water (DW) (<10 ng L−1 of single PFAAs) on serum concentrations. Four perfluorosulfonic acids (PFSAs) and 11 perfluorocarboxylic acids (PFCAs) were analyzed in serum from 5th grade children from 11 Swedish schools (N = 200; average age: 12 years) using liquid chromatography-tandem-mass-spectrometry. Data on demography and life-style/physiological factors were obtained by questionnaires. PFAA concentrations in raw and drinking water (DW) were obtained from the water works supplying DW to the schools. In multiple regression analyses school was the determinant contributing most to the variation in PFAA concentrations, with the lowest contribution for PFHpA (10%) and the highest for PFHxS (81%). Girls had lower adjusted mean concentrations of PFHxS, PFOS, PFNA and PFDA than boys, but a higher concentration of PFHxA. Girls reporting onset of menstruation had lower PFHxS and PFOA concentrations than other girls, suggesting menstrual bleeding elimination. Children born by mothers from less industrialized countries had lower mean concentrations of both PFSAs and PFCAs than children with mothers from highly industrialized countries, suggesting differences in early-life exposure. Life-style factors associated with paternal education levels appeared to influence PFAA concentrations differently than maternal education level. Already at an average DW PFHxS concentration of 2 ng L−1, children had a significantly higher adjusted mean serum PFHxS concentration than at an average DW concentration of <1.6 ng PFHxS L−1. Similar results were observed for PFOS and PFOA. The DW variable explained 16% (PFOA) to 78% (PFHxS) of the variation in serum PFAA concentrations, suggesting that low-level-contaminated DW is a significant source of exposure for children in Sweden. Although some of the associations, especially those with menstruation and maternal birth country, should be interpreted with extra caution due to the small size of the study, the results contribute to future work on identifying populations of children at risk of elevated PFAA exposures

    Exposure of Swedish adolescents to elements, persistent organic pollutants (POPs), and rapidly excreted substances-The Riksmaten adolescents 2016-17 national survey

    Get PDF
    Adolescence is a period of significant physiological changes, and likely a sensitive window to chemical exposure. Few nation-wide population-based studies of chemical body burdens in adolescents have been published. In the national dietary survey Riksmaten Adolescents (RMA) 2016-17, over 13 chemical substance groups, including elements, chlorinated/brominated/fluorinated persistent organic pollutants (POPs) were analysed in blood, and in urine metabolites of phthalates/phthalate alternatives, phosphorous flame retardants, polycyclic aromatic hydrocarbons (PAHs), and pesticides, along with bisphenols and biocide/preservative/antioxidant/UV filter substances (N = 1082, ages 11-21). The aim was to characterize the body burdens in a representative population of adolescents in Sweden, and to compare results with human biomonitoring guidance values (HBM-GVs). Cluster analyses and Spearman's rank order correlations suggested that concentrations of substances with known common exposure sources and similar toxicokinetics formed obvious clusters and showed moderate to very strong correlations (r & GE; 0.4). No clusters were formed between substances from different matrices. Geometric mean (GM) concentrations of the substances were generally less than 3-fold different from those observed among adolescents in NHANES (USA 2015-16) and GerES V (Germany 2014-17). Notable exceptions were brominated diphenyl ethers (PBDEs) with >20-fold lower GM concentrations, and the biocide triclosan and ultraviolet (UV) filter benzophenone-3 with >15-fold lower mean concentrations in RMA compared to NHANES. Exceedance of the most conservative HBM-GVs were observed for aluminium (Al, 26% of subjects), perfluorooctanesulfonic acid (PFOS, 19%), perfluorooctanoic acid (PFOA, 12%), lead (Pb, 12%), MBP (dibutyl phthalate metabolite, 4.8%), hexachlorobenzene (HCB, 3.1%) and 3-phenoxybenzoic acid (PBA, pyrethroid metabolite, 2.2%). Males showed a higher proportion of exceedances than females for Pb, HCB and PFOS; otherwise no gender-related differences in exceedances were observed. A higher proportion of males than females had a Hazard Index (HI) of substances with liver and kidney toxicity and neurotoxicity >1. Industrialized countries with similarly high standards of living, with some exceptions, show comparable average body burdens of a variety of toxic chemicals among adolescents from the general population. The exceedances of HBM-GVs and HIs strongly suggests that further efforts to limit chemical exposure are warranted

    Demographic, life-style and physiological determinants of serum per- and polyfluoroalkyl substance (PFAS) concentrations in a national cross-sectional survey of Swedish adolescents

    Get PDF
    Per: and polyfluoroalkyl substances (PFAS) may affect adolescent health, yet factors related to PFAS concentrations in serum are poorly understood. We studied demographic, life-style and physiological determinants of serum PFAS concentrations in Swedish adolescents from a nation-wide survey, Riksmaten Adolescents 2016-17 (RMA, age 10-21 years, n = 1098). Serum samples were analyzed for 42 PFAS, using liquid chromatography-tandem mass spectrometry. The cumulative probability model was used to estimate associations between serum PFAS and determinants, using ordinal logistic regression. Legacy linear (lin-) perfluorooctanoic acid (PFOA), perfluorononaoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), lin-perfluorohexanesulfonic acid (PFHxS) and lin-/branched (br-) perfluorooctanesulfonic acid (PFOS) were quantifiable in >= 70% of the samples. The emerging PFAS 9-chlorohexanedecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS) was quantified in 5.4% of the samples, suggesting initiation of long-range transport far from production sites. Median concentrations of all legacy PFAS were 100 ng/g serum) lin-PFHxS and lin-/br-PFOS concentrations due to previous high exposure from PFAS-contaminated drinking water. Legacy PFAS exposure was strongly associated with birth country of the participants and their mothers. 2-fold higher estimated adjusted mean (EAM) concentrations were seen among high income country participants with mothers from high income countries than among low/lower-middle income country participants with mothers from the same category. Menstruating females had lower lin-PFOA and br-PFOS EAM concentrations than those who were not. Iron status (plasma ferritin) among females may be a marker of intensity of menstrual bleeding, but it was not significantly associated with legacy PFAS concentrations among females. Further studies are needed to determine how physiological changes occurring around menstruation affect the toxicokinetics of PFAS in females. In conclusion, PFAS are pollutants of the industrialized world and some of the identified determinants may be overlooked confounders/effect modifiers that should be included in future PFAS/health studies among adolescents

    Healthy eating index and diet diversity score as determinants of serum perfluoroalkyl acid (PFAA) concentrations in a national survey of Swedish adolescents

    Get PDF
    Food is an important source of perfluoroalkyl acid (PFAA) exposure for the general adult population, but few data exist for adolescents. Healthy food habits established during adolescence may positively influence health later in life. Associations between serum PFAA concentrations and a healthy eating index (SHEIA15), as well as a diet diversity score (RADDS), were determined in a nationally representative adolescent population from Sweden (Riksmaten Adolescents 2016–2017, RMA). Using consumption data from food registrations and frequency questionnaires, we additionally analyzed associations with commonly consumed food groups. Associations were analyzed by fitting a cumulative probability model using ordinal regression. Among the seven PFAAs detected in ≥70% of the 1098 participants (age 10–21 years), median concentrations ranged fro

    Perfluoroalkyl Acids (PFAAs) in Serum from 2-4-Month-Old Infants: Influence of Maternal Serum Concentration, Gestational Age, Breast-Feeding, and Contaminated Drinking Water

    Get PDF
    Little is known about factors influencing infant perfluorinated alkyl acid (PFAA) concentrations. Associations between serum PFAA concentrations in 2-4-month-old infants (n = 101) and determinants were investigated by multiple linear regression and general linear model analysis. In exclusively breastfed infants, maternal serum PFAA concentrations 3 weeks after delivery explained 13% (perfluoroundecanoic acid, PFUnDA) to 73% (perfluorohexanesulfonate, PFHxS) of infant PFAA concentration variation. Median infant/maternal ratios decreased with increasing PFAA carbon chain length from 2.8 for perfluoroheptanoic acid and perfluorooctanoic acid (PFOA) to 0.53 for PFUnDA and from 1.2 to 0.69 for PFHxS and perfluorooctanesulfonate (PFOS). Infant PFOA, perfluorononanoic acid (PFNA), and PFOS levels increased 0.7-1.2% per day of gestational age. Bottle-fed infants had mean concentrations of PFAAs 2 times lower than and a mean percentage of branched (%br) PFOS isomers 1.3 times higher than those of exclusively breast-fed infants. PFOA, PFNA, and PFHxS levels increased 8-11% per week of exclusive breast-feeding. Infants living in an area receiving PFAA-contaminated drinking water had 3-fold higher mean perfluorobutanesulfonate (PFBS) and PFHxS concentrations and higher mean %br PFHxS. Prenatal PFAA exposure and postnatal PFAA exposure significantly contribute to infant PFAA serum concentrations, depending on PFAA carbon chain length. Moderately PFBS- and PFHxS-contaminated drinking water is an important indirect exposure source

    Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies

    Get PDF
    The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 μg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 μg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all investigators of the contributing studies for their participation and contribution to the joint HBM4EU survey and the national programme owners for their financial support. Also thanks to the participating teenagers and their families, the field workers that collected the samples. The FLEHS IV study was conducted within the framework of the Flemish Center of Expertise on Environment and Health (FLEHS 2016–2020) and funded by the Flemish Government, Department of Environment & Spatial Development. We thank the teenagers and their families that participated in the study, the field workers from the Pro vincial Institute of Hygiene and VITO for the sample and data collection. All collaborators of the scientific teams of the Flemish Center of Expertise on Environment and Health (https://www.milieu-en-gezondheid.be/en/about-the-center-0) and Karen Van Campenhout and Caroline Teughels from the Flemish Department of Environment & Spatial Development for their valuable input in the field work committee. The funding of the German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection is gratefully acknowledged. BEA study was co-funded by the Spanish Ministry of Agriculture, Fisheries and Food and the Insituto de Salud Carlos III (SEG 1321/15). In Slovenia the work was cofounded by the Slovenian Research Funding Agency – ARRS through a research programme P-0143. ESTEBAN was Funded by Sant´e Publique France and the French ministries of Health and the Environment. The study of RIKSMATEN was conducted and mainly financed by the Swedish Food Agency. Financial support was provided from the Swedish Civil Contingencies Agency and from the Swedish Environmental Pro tection Agency (SEPA).S

    Determinants of serum concentrations of organochlorine compounds in Swedish pregnant women: a cross-sectional study

    Get PDF
    BACKGROUND: We performed a cross-sectional study of associations between personal characteristics and lipid-adjusted serum concentrations of certain PCB congeners and chlorinated pesticides/metabolites among 323 pregnant primiparous women from Uppsala County (age 18–41 years) sampled 1996–1999. METHODS: Extensive personal interviews and questionnaires about personal characteristics were performed both during and after pregnancy. Concentrations of organochlorine compounds in serum lipids in late pregnancy were analysed by gas chromatography. Associations between personal characteristics and serum levels of organochlorine compounds were analysed by multiple linear regression. RESULTS: Participation rate was 82% (325 of 395 women). Serum concentrations of PCB congeners IUPAC no. 28, 52, 101, 105 and 167, and o, p'-DDT and -DDE, p, p'-DDT and -DDD, oxychlordane, and γ- and α-HCH were in many cases below the limit of quantification (LOQ). No statistical analysis of associations with personal characteristics could be performed for these substances. Concentrations of PCB congeners IUPAC no. 118, 138, 153, 156 and 180, HCB, β-HCH, trans-nonachlor and p, p'-DDE increased with increased age and were highest in women sampled early during the 4 year study period. This shows that older women and women sampled early in the study had experienced the highest life-time exposure levels, probably mainly during childhood and adolescence. The importance of early exposures was supported by lower PCB concentrations and higher β-HCH and p, p'-DDE concentrations among women born in non-Nordic countries. Moreover, serum concentrations of certain PCBs and pesticide/metabolites were positively associated with consumption of fatty fish during adolescence, and concentrations of CB 156, CB 180 and p, p'-DDE increased significantly with number of months women had been breast-fed during infancy. Short-term changes in bodily constitution may, however, also influence serum concentrations, as suggested by negative associations between concentrations of organochlorine compounds and BMI before pregnancy and weight change during pregnancy. CONCLUSION: Although some of the associations could be caused by unknown personal characteristics confounding the results, our findings suggest that exposures to organochlorine compounds during childhood and adolescence influence the body burdens of the compounds during pregnancy
    • …
    corecore