777 research outputs found
To DGC or not to DGC: oxygen guarding in the termite Zootermopsis nevadensis (Isoptera: Termopsidae)
The ability of some insects to engage in complex orchestrations of tracheal gas exchange has been well demonstrated, but its evolutionary origin remains obscure. According to a recently proposed hypothesis, insects may employ spiracular control of gas exchange to guard tissues against long-term oxidative damage by using the discontinuous gas-exchange cycle (DGC) to limit internal oxygen partial pressure (P_(O_2)). This manuscript describes a different approach to oxygen guarding in the lower termite Zootermopsis nevadensis. These insects do not display a DGC but respond to elevated oxygen concentrations by restricting spiracular area, resulting in a transient decline in CO_2 emission. High internal CO_2 concentrations are then maintained; restoring normoxia results in a transient reciprocal increase in CO_2 emission caused by release of excess endotracheal CO_2. These changes in spiracular area reflect active guarding of low internal O_2 concentrations and demonstrate that regulation of endotracheal hypoxia takes physiological priority over prevention of CO_2 build-up. This adaptation may reflect the need to protect oxygen-sensitive symbionts (or, gut bug guarding). Termites may eschew the DGC because periodic flushing of the tracheal system with air may harm the obligate anaerobes upon which the lower termites depend for survival on their native diet of chewed wood
The functions and prospects of English medium teacher training in South Africa: A point of view
MJS201
Sex-biased parental care and sexual size dimorphism in a provisioning arthropod
The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests.
To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest.
We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight.
Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species
Oxygen Reperfusion Damage in an Insect
The deleterious effects of anoxia followed by reperfusion with oxygen in higher animals including mammals are well known. A convenient and genetically well characterized small-animal model that exhibits reproducible, quantifiable oxygen reperfusion damage is currently lacking. Here we describe the dynamics of whole-organism metabolic recovery from anoxia in an insect, Drosophila melanogaster, and report that damage caused by oxygen reperfusion can be quantified in a novel but straightforward way. We monitored CO2 emission (an index of mitochondrial activity) and water vapor output (an index of neuromuscular control of the spiracles, which are valves between the outside air and the insect's tracheal system) during entry into, and recovery from, rapid-onset anoxia exposure with durations ranging from 7.5 to 120 minutes. Anoxia caused a brief peak of CO2 output followed by knock-out. Mitochondrial respiration ceased and the spiracle constrictor muscles relaxed, but then re-contracted, presumably powered by anaerobic processes. Reperfusion to sustained normoxia caused a bimodal re-activation of mitochondrial respiration, and in the case of the spiracle constrictor muscles, slow inactivation followed by re-activation. After long anoxia durations, both the bimodality of mitochondrial reactivation and the recovery of spiracular control were impaired. Repeated reperfusion followed by episodes of anoxia depressed mitochondrial respiratory flux rates and damaged the integrity of the spiracular control system in a dose-dependent fashion. This is the first time that physiological evidence of oxygen reperfusion damage has been described in an insect or any invertebrate. We suggest that some of the traditional approaches of insect respiratory biology, such as quantifying respiratory water loss, may facilitate using D. melanogaster as a convenient, well-characterized experimental model for studying the underlying biology and mechanisms of ischemia and reperfusion damage and its possible mitigation
Metabolic rate scaling, ventilation patterns and respiratory water loss in red wood ants: activity drives ventilation changes, metabolic rate drives water loss
Metabolic rate and its relationship with body size is a fundamental determinant of many life history traits and potentially of organismal fitness. Alongside various environmental and physiological factors, the metabolic rate of insects is linked to distinct ventilation patterns. Despite significant attention, however, the precise role of these ventilation patterns remains uncertain. Here, we determined the allometric scaling of metabolic rate and respiratory water loss in the red wood ant, as well as assessing the effect of movement upon metabolic rate and ventilation pattern. Metabolic rate and respiratory water loss are both negatively allometric. We observed both continuous and cyclic ventilation associated with relatively higher and lower metabolic rates, respectively. In wood ants, however, movement not metabolic rate is the primary determinant of which ventilation pattern is performed. Conversely, metabolic rate not ventilation pattern is the primary determinant of respiratory water loss. Our statistical models produced a range of relatively shallow intraspecific scaling exponents between 0.40 and 0.59, emphasising the dependency upon model structure. Previous investigations have revealed substantial variation in morphological allometry among wood ant workers from different nests within a population. Metabolic rate scaling does not exhibit the same variability, suggesting that these two forms of scaling respond to environmental factors in different ways
Automatic classification of digital objects for improved metadata quality of electronic theses and dissertations in institutional repositories.
Higher education institutions typically employ Institutional Repositories (IRs) in order to curate and make available Electronic Theses and Dissertations (ETDs). While most of these IRs are implemented with self-archiving functionalities, self-archiving practices are still a challenge. This arguably leads to inconsistencies in the tagging of digital objects with descriptive metadata, potentially compromising searching and browsing of scholarly research output in IRs. This paper proposes an approach to automatically classify ETDs in IRs, using supervised machine learning techniques, by extracting features from the minimum possible input expected from document authors: the ETD manuscript. The experiment results demonstrate the feasibility of automatically classifying IR ETDs and, additionally, ensuring that repository digital objects are appropriately structured. Automatic classification of repository objects has the obvious benefit of improving the searching and browsing of content in IRs and further presents opportunities for the implementation of third-party tools and extensions that could potentially result in effective self-archiving strategies
The effects of temperature and body mass on jump performance of the locust Locusta migratoria
Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M0.17±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M0.00±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (Lf+t; mm) of the femur and tibia of the hind leg, Lf+t = 34.9M0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.Edward P. Snelling, Christie L. Becker, Roger S. Seymou
- …
