854 research outputs found

    Plasma wake inhibition at the collision of two laser pulses in an underdense plasma

    Get PDF
    An electron injector concept for laser-plasma accelerator was developed in ref [1] and [2] ; it relies on the use of counter-propagating ultrashort laser pulses. In [2], the scheme is as follows: the pump laser pulse generates a large amplitude laser wakefield (plasma wave). The counter-propagating injection pulse interferes with the pump laser pulse to generate a beatwave pattern. The ponderomotive force of the beatwave is able to inject plasma electrons into the wakefield. We have studied this injection scheme using 1D Particle in Cell (PIC) simulations. The simulations reveal phenomena and important physical processes that were not taken into account in previous models. In particular, at the collision of the laser pulses, most plasma electrons are trapped in the beatwave pattern and cannot contribute to the collective oscillation supporting the plasma wave. At this point, the fluid approximation fails and the plasma wake is strongly inhibited. Consequently, the injected charge is reduced by one order of magnitude compared to the predictions from previous models.Comment: 4 pages, 4 figure

    Energy boost in laser wakefield accelerators using sharp density transitions

    Full text link
    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime it is much more difficult to achieve phase locking. As an alternative we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations and we present gain estimations for single and multiple stages of rephasing

    Turbulence without pressure

    Get PDF
    We develop exact field theoretic methods to treat turbulence when the effect of pressure is negligible. We find explicit forms of certain probability distributions, demonstrate that the breakdown of Galilean invariance is responsible for intermittency and establish the operator product expansion. We also indicate how the effects of pressure can be turned on perturbatively.Comment: 12 page

    Concept of a laser-plasma based electron source for sub-10 fs electron diffraction

    Full text link
    We propose a new concept of an electron source for ultrafast electron diffraction with sub-10~fs temporal resolution. Electrons are generated in a laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV energy with kHz repetition rate. The possibility of producing this electron source is demonstrated using Particle-In-Cell simulations. We then use particle tracking simulations to show that this electron beam can be transported and manipulated in a realistic beamline, in order to reach parameters suitable for electron diffraction. The beamline consists of realistic static magnetic optics and introduces no temporal jitter. We demonstrate numerically that electron bunches with 5~fs duration and containing 1.5~fC per bunch can be produced, with a transverse coherence length exceeding 2~nm, as required for electron diffraction

    Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas

    Full text link
    The interaction of two laser pulses in an underdense plasma has proven to be able to inject electrons in plasma waves, thus providing a stable and tunable source of electrons. Whereas previous works focused on the "beatwave" injection scheme in which two lasers with the same polarization collide in a plasma, this present letter studies the effect of polarization and more specifically the interaction of two colliding cross-polarized laser pulses. It is shown both theoretically and experimentally that electrons can also be pre-accelerated and injected by the stochastic heating occurring at the collision of two cross-polarized lasers and thus, a new regime of optical injection is demonstrated. It is found that injection with cross-polarized lasers occurs at higher laser intensities.Comment: 4 pages, 4 figure

    Anticorrelation between Ion Acceleration and Nonlinear Coherent Structures from Laser-Underdense Plasma Interaction

    Get PDF
    In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.Comment: 4 pages, 5 figure

    Unique Fock quantization of scalar cosmological perturbations

    Get PDF
    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lema\^{i}tre-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.Comment: 19 pages, minor impovementes included, typos correcte

    Early out-of-equilibrium beam-plasma evolution

    Full text link
    We solve analytically the out-of-equilibrium initial stage that follows the injection of a radially finite electron beam into a plasma at rest and test it against particle-in-cell simulations. For initial large beam edge gradients and not too large beam radius, compared to the electron skin depth, the electron beam is shown to evolve into a ring structure. For low enough transverse temperatures, the filamentation instability eventually proceeds and saturates when transverse isotropy is reached. The analysis accounts for the variety of very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter

    Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method

    Full text link
    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods that are commonly used in PIC, the developed method does not produce numerical dispersion, and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma
    • …
    corecore